Quick notes on Grover’s algorithm

Peter Brown

June 22, 2022

1 Grover’s algorithm

Suppose you have a list of N items and you need to find the item in the list with a particular property. For
the remainder of this we’ll take N = 2™ because we’ll be considering running the algorithm on n qubits. Le.,
you have some query function f : {0,1} — {0, 1} that satisfies

1 ifx=w

f(x) = { (1)

0 otherwise.

Here the function is defined so the item we are looking for is the bitstring w. In Grover’s algorithm we’ll

use a phase oracle
Uw [x) = (=1)7™ |x) , (2)

where |x) = |zoz1...2n) = |20) ® |71) ® -+ @ |zy) is an n-qubit state. You could implement this unitary
by using a phase-kickback like in the Deutsch-Josza algorithm, but we can also just view the oracle as the
diagonal unitary

(—1)f(0--0) 0 0
_)f0-
e | 0 3)
: K . 0
0 0 0 (—1)7¢-D

that is applied only to the first n qubits (no extra qubits). Effectively, it leaves all bitstrings alone except
|w) which is applies a (—1) phase to.

It feels like from the implementation perspective that we're cheating by defining this unitary oracle as it
looks like we already know the answer. However, in a useful real world problem the idea would be to build
the oracle out of a circuit that somehow checks that our input satisfies a desired property. For example, we
might check that a hash of the input evaluates to a certain value, SHA(x) = y. We can then implement
the oracle by building a circuit that will check the value of a hash and apply a phase if it is equal to y. In
this way we would end up with an oracle like Uy, but we wouldn’t a priori know the solution. Nevertheless,
complexity theorists are still interested in query complexity of some oracle even if we don’t know how to
necessarily implement it in practice.

We define a couple more gates, let R = 2|0)(0| — I be an n-qubit unitary. This gate has the following action
on the n-qubit computational basis states

Rix) = {|x> ifx=0 @)

—|x) otherwise
Now let S = H®"RH®" where H is the Hadamard gate. By the definition of R we have that

S =2+ (+*" — 1. (5)

I> SUW\LH:D = \‘-Pu.-r26>
|G = SN2+ 0 SE) (B

uw]me>: qu_d_>

Figure 1: A geometric depiction of the action of the Grover G gate. The state of the system at some iteration
can be thought of as a superposition [i,) = sin(y) |[w) + cos(«) |Bad). The action of the oracle gate Us, is
then a reflection about the vector |Bad) and the S gate is a reflection about the vector |+)®".

Now we define a subcircuit which we call G which is just

G} - o5 ©

i.e., as a matrix G = SUy.
Grover’s algorithm circuit

The circuit used in Grover’s algorithm is the following

0" g

where the G gate is repeated O(v/N) times.

1.1 The geometric intuition

Recall that H®" |0) = 2"/2 >, Ix) is an equal superposition over all bitstrings. There is a single bitstring
in this set that we actually want, namely |w). Define the vector

|Bad) = (8)

1
71 2 ™

XAW
to be an equal superposition of every bitstring that is not |w). Notice that we have
|4+)®™ = sin(0) |w) + cos(0) |Bad) . (9)

We can think about these three vectors as lying in some circle (where orthogonality is denoted by perpen-
dicular vectors), see Fig. 1.

Now consider any other vector
[¥(a)) = sin(a) [w) + cos(a) |Bad) (10)

which lies elsewhere in this circle. The main geometrical intuition behind Grover’s algorithm is the action
of the gates on vectors in this circle. In particular,

reflects about the line o = 0 (about the vector |Bad)) (11)

and

reflects about the line o = 6 (about the vector |+)%™) (12)
So overall the Gate G is the composition of the two reflections, there overall action on the state [¢)) is
G |¢) = sin(a + 20) |w) + cos(a + 20) | Bad) . (13)

So the G gate is rotating the vector anticlockwise by an angle 20 each time we apply it.

In Grover’s Algorithm we start by preparing the state
sin(d) |w) + cos(8) | Bad) (14)
and after applying G k-times we will have a state
sin(6(2k + 1)) |w) + cos(0(2k + 1)) | Bad) (15)

we can then choose k, the number of times we apply the gate G, to be such that sin(6(2k + 1))? ~ 1 and
we’ll have a large probability of measuring the correct solution! It can be shown that k scales like O(v/N)!

	Grover's algorithm
	The geometric intuition

