
Quick notes on Grover’s algorithm

Peter Brown

June 22, 2022

1 Grover’s algorithm

Suppose you have a list of N items and you need to find the item in the list with a particular property. For
the remainder of this we’ll take N = 2n because we’ll be considering running the algorithm on n qubits. I.e.,
you have some query function f : {0, 1}N → {0, 1} that satisfies

f(x) =

{
1 if x = w

0 otherwise.
(1)

Here the function is defined so the item we are looking for is the bitstring w. In Grover’s algorithm we’ll
use a phase oracle

Uw |x〉 = (−1)f(x) |x〉 , (2)

where |x〉 = |x0x1 . . . xn〉 = |x0〉 ⊗ |x1〉 ⊗ · · · ⊗ |xn〉 is an n-qubit state. You could implement this unitary
by using a phase-kickback like in the Deutsch-Josza algorithm, but we can also just view the oracle as the
diagonal unitary

Uw =


(−1)f(0...0) 0 · · · 0

0 (−1)f(0...1)
. . . 0

...
. . .

. . . 0
0 0 0 (−1)f(1...1)

 (3)

that is applied only to the first n qubits (no extra qubits). Effectively, it leaves all bitstrings alone except
|w〉 which is applies a (−1) phase to.

It feels like from the implementation perspective that we’re cheating by defining this unitary oracle as it
looks like we already know the answer. However, in a useful real world problem the idea would be to build
the oracle out of a circuit that somehow checks that our input satisfies a desired property. For example, we
might check that a hash of the input evaluates to a certain value, SHA(x) = y. We can then implement
the oracle by building a circuit that will check the value of a hash and apply a phase if it is equal to y. In
this way we would end up with an oracle like Uw but we wouldn’t a priori know the solution. Nevertheless,
complexity theorists are still interested in query complexity of some oracle even if we don’t know how to
necessarily implement it in practice.

We define a couple more gates, let R = 2 |0〉〈0|− I be an n-qubit unitary. This gate has the following action
on the n-qubit computational basis states

R |x〉 =

{
|x〉 if x = 0

− |x〉 otherwise
(4)

Now let S = H⊗nRH⊗n where H is the Hadamard gate. By the definition of R we have that

S = 2 |+〉〈+|⊗n − I . (5)

1

Figure 1: A geometric depiction of the action of the Grover G gate. The state of the system at some iteration
can be thought of as a superposition |ψα〉 = sin(ϕ) |w〉+ cos(α) |Bad〉. The action of the oracle gate Uw is
then a reflection about the vector |Bad〉 and the S gate is a reflection about the vector |+〉⊗n.

Now we define a subcircuit which we call G which is just

G = Uw S (6)

i.e., as a matrix G = S Uw.

Grover’s algorithm circuit

The circuit used in Grover’s algorithm is the following

. . .|0〉⊗n H⊗n G G G (7)

where the G gate is repeated O(
√
N) times.

1.1 The geometric intuition

Recall that H⊗n |0〉 = 2n/2
∑

x |x〉 is an equal superposition over all bitstrings. There is a single bitstring
in this set that we actually want, namely |w〉. Define the vector

|Bad〉 =
1√

2n − 1

∑
x6=w

|x〉 (8)

to be an equal superposition of every bitstring that is not |w〉. Notice that we have

|+〉⊗n = sin(θ) |w〉+ cos(θ) |Bad〉 . (9)

We can think about these three vectors as lying in some circle (where orthogonality is denoted by perpen-
dicular vectors), see Fig. 1.

Now consider any other vector
|ψ(α)〉 = sin(α) |w〉+ cos(α) |Bad〉 (10)

which lies elsewhere in this circle. The main geometrical intuition behind Grover’s algorithm is the action
of the gates on vectors in this circle. In particular,

Uw
reflects about the line α = 0 (about the vector |Bad〉) (11)

2

and

S reflects about the line α = θ (about the vector |+〉⊗n) (12)

So overall the Gate G is the composition of the two reflections, there overall action on the state |ψ〉 is

G |ψ〉 = sin(α+ 2θ) |w〉+ cos(α+ 2θ) |Bad〉 . (13)

So the G gate is rotating the vector anticlockwise by an angle 2θ each time we apply it.

In Grover’s Algorithm we start by preparing the state

sin(θ) |w〉+ cos(θ) |Bad〉 (14)

and after applying G k-times we will have a state

sin(θ(2k + 1)) |w〉+ cos(θ(2k + 1)) |Bad〉 (15)

we can then choose k, the number of times we apply the gate G, to be such that sin(θ(2k + 1))2 ≈ 1 and
we’ll have a large probability of measuring the correct solution! It can be shown that k scales like O(

√
N)!

3

	Grover's algorithm
	The geometric intuition

