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1 Theory questions

1. A general qubit gate Note that a general qubit gate can be written as

U(θ, φ, λ) =

(
cos(θ/2) −eiλ sin(θ/2)

eiφ sin(θ/2) ei(φ+λ) cos(θ/2)

)
(1)

and so by specifying (θ, φ, λ) we can write any single qubit quantum gate.

(a) Write down the parameters (θ, φ, λ) that specify the Pauli gates X,Y and Z and the Hadamard
gate.

(b) Show that U is really a quantum gate.

2. Entanglement as quantum correlations

(a) Show that if two qubits are not entangled then regardless of whatever measurement we perform
the statistics will always be independent, i.e.,

P(a, b) = P(a)P(b) (2)

where P(a, b) is the joint probability of getting outcome a on qubit 1 and outcome b on qubit
2 and P(a), P(b) are the marginal probabilities for the measurements on qubit 1 and qubit 2
respectively. This shows that non-entangled quantum systems lead to independent measurement
results.

(b) Suppose we have a two qubit system in the state

|ψ〉 =
|01〉 − |10〉√

2
(3)

and Alice holds the first qubit and Bob holds the second. Alice then measures her qubit in the
{|0〉 , |1〉} basis.

i. What are the possible outcomes, probabilities and post-measurement states for Alice’s mea-
surement?

Outcome Probability Post-measurement state
0
1

ii. If Alice received the outcome 0 and she knows Bob will measure in the {|0〉 , |1〉} basis, can
she predict the outcome of his measurement? What if he measures in the {|+〉 , |−〉} basis
instead?
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iii. Prove that if Alice and Bob measure the state |ψ〉 in the same orthonormal basis {|v0〉 , |v1〉}
then they will always get perfectly anti-correlated outcomes i.e.,

P(a, b) =

{
1/2 if a 6= b

0 otherwise
(4)

(c) Consider the orthonormal basis of entangled two-qubit states known as the Bell-basis

|Φ00〉 =
|00〉+ |11〉√

2

|Φ01〉 =
|01〉+ |10〉√

2

|Φ10〉 =
|00〉 − |11〉√

2

|Φ11〉 =
|01〉 − |10〉√

2

(5)

i. Suppose that you share |Φ00〉 with Bob but you only have access to the first qubit. By applying
gates only to your qubit, how can you change the global state to each of the different Bell
states? I.e., find Uxy such that

|Φxy〉 = (Uxy ⊗ I) |Φ00〉 (6)

for x, y ∈ {0, 1}.

ii. Suppose you have the first qubit of the two-qubit state

(U ⊗ I) |Φ00〉 (7)

where U is any qubit gate. Show that no matter what orthonormal basis you choose to
measure your qubit in, {|v0〉 , |v1〉}, you will always have

P(0) = 1/2 = P(1) . (8)

This means that any local information about these two-qubit entangled states is always uni-
formly random. In a sense, all of the meaningful information about these two-qubit entangled
states must come from both qubits.

(d) Optimal winning probability for the CHSH game (Difficult)

[PB: Do not attempt before looking at exercise 6 in the practical section]

Alice and Bob play the CHSH game. For convenience we label the inputs as x, y ∈ {0, 1} and
the outputs as a, b ∈ {+1,−1}. The winning condition then becomes (−1)xy = ab. Let |ψ〉 be
the quantum state shared by Alice and Bob. Let Alice’s projective measurement on input x be
{A+1|x, A−1|x} and let Bob’s projective measurement on input y be {B+1|y, B−1|y}. Finally define
the observables (expectation operators) Ax = A+1|x −A−1|x and By = B+1|y −B−1|y.

i. Show that for any fixed (x, y) the expected value of the product ab is given by

〈ψ|Ax ⊗By |ψ〉 .

ii. Let K = A0⊗B0 +A0⊗B1 +A1⊗B0−A1⊗B1. Show that the expected winning probability
is

1

2
+

1

8
〈ψ|K |ψ〉 .
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iii. Show that
K2 = 4I − [A0, A1]⊗ [B0, B1]

where [X,Y ] = XY − Y X.

iv. Show that 〈ψ|K |ψ〉 ≤ 2
√

2. What does this say about the maximum winning probability for
the CHSH game? (Hint: begin with the Cauchy-Schwarz inequality to bound 〈ψ|K |ψ〉 in
terms of 〈ψ|K2 |ψ〉).

2 Practical exercises

You should hopefully now be getting a bit familiar with running quantum circuits on the IBM platform (either
via QISKIT or the composer). Let’s dive into some exercises about quantum states and entanglement and
its usage.

1. Efficient entanglement generation

You may or may not have noticed but the circuit you design may not be the circuit that the quantum
computer actually implements. (Question: Can you think about why this might be?) For example, I
designed the following circuit on the composer

which is meant to generate a 5 qubit entangled state (|00000〉 + |11111〉)/
√

2 and then measure it in
the computational basis. (Question: what outcomes do we expect to get from the measurement and
with what probabilities?).

I sent the above circuit to be ran on the IBM QUITO machine. Before running the circuit, the IBM
platform transformed my circuit into
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as you can see this is quite a lot more complicated than the original circuit that I sent. In particular,
the number of CNOT gates has grown significantly.

(a) Why did IBM transform my circuit into the second circuit before running the program?

(b) Interpret how the second circuit is performing the same task as the first. Hint: what is

(9)

doing?

(c) Can you find a circuit that does the same preparation and measurement as the first circuit but
transpiles into fewer CNOT gates? (What’s the optimal?)

(d) What is the best way to create the 5 qubit entangled state (|00000〉+|11111〉)/
√

2 and measure it on
the QUITO machine? Here “best” refers to the circuit that produces the most accurate statistics.
That is, we end up with a 5 bit distribution which should have P(00000) = P(11111) = 1/2. Let
Q(x0x1x2x3x4) be the 5 bit distribution coming from the statistics of the quantum computer. We
can measure the error by the total variation

∆(P,Q) =
∑

x1x2x3x4x5

|P(x1x2x3x4x5)−Q(x1x2x3x4x5)| . (10)

Can you design a circuit that produces a smaller ∆(P,Q) than the second circuit? Does the circuit
you found in part (c) do better? What about the other machines?

2. Learning unknown quantum states

If you receive a single unknown qubit

|ψ〉 = cos(θ/2) |0〉+ sin(θ/2)eiφ |1〉 θ ∈ [0, π], φ ∈ [0, 2π). (11)

(i.e., you don’t know the values of θ and φ) then it is impossible to tell what state you received. You
can measure it but your measurement will almost certainly disturb the state and so you can only collect
a single shot of statistics (not so useful).

Instead suppose you receive many copies of |ψ〉, this means you can collect lots of statistics by measuring
each one individually (potentially in different bases).

(a) Given many copies of |ψ〉 can you develop a way to approximate the values of θ and φ?
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(b) What’s the most efficient way you can find to do this, in terms of the number of different bases
you need to measure in?

(c) Implement your protocol on the quantum computers of IBM. Have a friend write a state prepara-
tion circuit for you to prepare a state of the form (11). Try to work out (approximate) the θ and
φ that they chose for you. (Remember to collect enough statistics by increasing the shots and you
will probably need to use different circuits to perform different measurements1). Are you able to
get good approximations?

Hint: To create a custom quantum state you could the following function

1 from q i s k i t import QuantumCircuit , QuantumRegister , C l a s s i c a l R e g i s t e r
2 from math import cos , s in , p i
3 from cmath import exp
4

5 qr = QuantumRegister (1 , name=”q” ) # I n i t i a l i z e 1 qubit
6 out = C l a s s i c a l R e g i s t e r (1 , name=’ out ’ )
7 qc = QuantumCircuit ( qr , out )
8

9 de f i n i t i a l i z e u n k n o w n s t a t e ( qc ) :
10 # IF TESTING DON’T CHEAT AND LOOK HERE
11 theta , phi = pi /4 , p i /8
12 s t a t e = [ cos ( theta /2) , s i n ( theta /2) ∗ exp (1 j ∗ phi ) ]
13 qc . i n i t i a l i z e ( s ta te , 0)
14

15 i n i t i a l i z e u n k n o w n s t a t e ( qc )
16

Unfortunately, if you try to print the circuit after you’ve initialized the custom state then it will
display the coefficients of the initialized state (I couldn’t find a way to change the label. . . ). You
can try to avoid this by designing the circuit first without the initialized state and only when you
are running the protocol add the unknown state and don’t print.

3. Learning unknown quantum gates

In a similar spirit to the last task, imagine you have access to a qubit gate U

U (12)

can you design a scheme to learn what the quantum gate is? Like in the previous question try to have
a friend prepare a quantum gate for you and use it in your detection circuit to try to learn what gate
they prepared.

To add your mystery gate to your circuit you can build a function like in the following code snippet
that uses the general form of qubit gates (see (1)). So you will only need to guess the values (θ, φ, λ).

1 from q i s k i t import QuantumCircuit , QuantumRegister , C l a s s i c a l R e g i s t e r
2 from math import cos , s in , p i
3 from cmath import exp
4

5 qr = QuantumRegister (1 , name=”q” ) # I n i t i a l i z e 1 qubit
6 out = C l a s s i c a l R e g i s t e r (1 , name=’ out ’ )
7 qc = QuantumCircuit ( qr , out )
8

9 de f add mystery gate ( qc ) :
10 # IF TESTING DON’T CHEAT AND LOOK HERE
11 theta , phi , lam = 0 , 0 , 0
12 qc . u( theta , phi , lam , 0)
13

14 add mystery gate ( qc )

1Although not necessarily, can you find a way to do random choices of different measurements in a single quantum circuit?
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Like with the previous question, if you draw the circuit after you add the mystery gate then you’ll see
the parameters. To avoid this you can design your testing circuit with a known gate and only add the
mystery gate once you are trying to run your protocol.

4. Learning unknown measurements

What about the same problem as the previous two but the measurement basis is now fixed? Can you
determine what the basis is by sending different states to be measured?

5. Superdense coding

There’s a result in quantum information theory that states that a single qubit can carry only one bit
of information.2 However, as this exercise will show, using entanglement Alice can send Bob two bits
of information whilst sending only a single qubit.

Suppose Alice and Bob share the two-qubit state |00〉+|11〉√
2

, Alice has qubit 1 and Bob has qubit 2.

(a) Now Alice generates a 2 bit message (a, b) ∈ {0, 1}2 that she wants to send to Bob. If a = 1 she
applys X to her qubit and if b = 1 she then also applies Z. What are the 4 two qubit states that
she could prepare?

(b) Suppose that Alice then sends her qubit to Bob, i.e., he has access to both qubits. Design a
circuit using Hadamard, CNOT and measurement that allows Bob to determine with probability
1 which state he received.

(c) Now suppose that during the transmission of the qubit from Alice to Bob, an adversary Eve
intercepts the qubit. Is it possible for Eve to gain any information about the message Alice was
trying to send?

(d) Try implementing the superdense coding scheme on the IBM machines and check that you can
really use pre-shared entanglement to send additional (secret) information.

(e) (Exploratory) Can you think of any ways to extend this protocol so Alice can send more infor-
mation?

6. Teleportation (More difficult)

The jupyter notebook Teleportation details how to simulate the teleportation protocol in qiskit.

(a) Unfortunately, the IBM machines cannot do everything that we’d expect a full quantum computer
to perform. At the moment this means that conditioning a gate on a classical outcome is not
possible. I.e., the circuit

U

(13)

cannot be perform on the IBM machines because it relies on applying the unitary U conditioned
on the outcome of a measurement of another qubit.

Nevertheless, we can apply a quantum trick known as the principle of deferred measurement which
states that we can always do the controlled gate before measuring

U

(14)

2This is called Holevo’s theorem.
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Figure 1: The entanglement teleportation scenario. There are 3 parties, Alice, Bob and Charlie. Alice
has one qubit A, Bob has 2 qubits B1B2 and Charlie has 1 qubit C. Initially, Alice and Bob have shared
the entangled state |Φ00〉AB1

and Bob and Charlie have shared the entangled state |Φ00〉B2C
. So Bob has

two qubits, one entangled with Alice’s qubit and the other entangled with Charlie’s qubit. Alice, Bob and
Charlie are far apart and cannot send their states to each other, but they can communicate classically, e.g.,
send measurement outcomes. (These are the same restrictions as in the standard teleportation protocol.) In
entanglement teleportation, we want to design and execute a protocol that allows Alice and Charlie end up
with entangled qubits despite having potentially never interacted before.

i. Show that for any two-qubit input state |ψ〉, the two circuits (13) and (14) act in the same
way, i.e., the state at the end is the same for both circuits.

ii. Using the above principle, modify the teleportation protocol implementation in order to run it
on one of the IBM quantum machines. Run the resulting circuit and check that teleportation
really works in practice!

iii. Do you think that using the principle of deferred measurement leads to a realistic implemen-
tation of the teleportation protocol? What are your thoughts?

(b) (More difficult) We’ve already seen how if Alice shares entanglement with Bob, she can teleport
an unknown quantum state to him by using the entanglement resource they share. Now consider
the following scenario depicted in Fig. 1 which we call the entanglement teleportation scenario.
There are 3 parties, Alice, Bob and Charlie. Alice has one qubit A, Bob has 2 qubits B1B2

and Charlie has 1 qubit C. Initially, Alice and Bob have shared the entangled state |Φ00〉AB1

and Bob and Charlie have shared the entangled state |Φ00〉B2C
. So Bob has two qubits, one

entangled with Alice’s qubit and the other entangled with Charlie’s qubit. Alice, Bob and Charlie
are far apart and cannot send their states to each other, but they can communicate classically,
e.g., measurement outcomes. (These are the same restrictions as in the standard teleportation
protocol.) In entanglement teleportation, we want to execute a protocol so that Alice and Charlie
end up with entangled qubits despite having potentially never interacted before.

Can you design such a protocol to achieve this task? Implement and simulate it to see if it works?
Can you run it on the IBM machines?

Hint: Think along the lines of the teleportation protocol!

7. Quantum nonlocality

The famous thought-experiment of Einstein, Podolsky and Rosen concerned itself with the statistical
correlations coming from the entangled state (3). In particular, they were concerned that if Alice and
Bob each have one of the qubits in the state

|01〉 − |10〉√
2

(15)
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then if they both perform the measurement {|v0〉 , |v1〉} they will get perfectly anticorrelated outcomes
P(0, 1) = P(1, 0) = 1/2. This means that as soon as Alice has the result of her measurement she
immediately knows what outcome Bob’s measurement will read, even if they are spacelike separated.

EPR thought that because this can occur when Alice and Bob are spacelike separated, the outcome of
Alice’s measurement cannot be influencing Bob’s system (because no signal should travel faster than
light). They therefore concluded that somehow it must be that the outcome of the measurement is
determined beforehand in the past. Effectively, they wanted the statistics of the experiment to be
described by a local hidden variable model

P(A = a,B = b) =
∑
λ

P(λ)P(A = a|λ)P(B = b|λ) (16)

i.e., there’s some hidden randomness λ (shared information in the past) that is responsible for the
correlations observed.

It’s simple to come up with a hidden variable model for the {|v0〉 , |v1〉} measurement. Let P(λ) = 1/2
for λ ∈ {0, 1}, then let

P(A = a|λ) =


1 if (a, λ) = (0, 0)

1 if (a, λ) = (1, 1)

0 otherwise

(17)

P(B = b|λ) =


1 if (b, λ) = (1, 0)

1 if (b, λ) = (0, 1)

0 otherwise

(18)

this gives a local hidden variable model for the statistics observed by Alice and Bob. (Flip a coin, if
heads give Alice 0 and Bob 1, if tails give Alice 1 and Bob 0.)

EPR thought that quantum theory was an incomplete theory and that there should be some hidden
variable model that better describes reality. We’ll now show that local hidden variable models actu-
ally cannot explain all statistics coming from quantum theory and hence quantum theory cannot be
explained by local hidden variables!

The CHSH game

Suppose Alice and Bob are separated so that they cannot communicate. Alice and Bob will each
receive an input x, y ∈ {0, 1} and they are tasked with producing an output a, b ∈ {0, 1}. They win
the game if

a⊕ b = xy . (19)

Suppose P(a, b|x, y) is the conditional distribution with which they produce their outputs given their
inputs, then the probability they win the game (if the inputs are chosen uniformly) is given by

pwin =
∑

a⊕b=xy

1

4
p(a, b|x, y) . (20)

(a) The best winning probability for local hidden variable models is given by pwin = 3/4. Suppose

Alice and Bob share the state |Φ00〉 = |00〉+|11〉√
2

, on input x Alice measures {|vx0 〉 , |vx1 〉} and on

input y Bob measures {|wy0〉 , |w
y
1〉}, i.e.,

P(a, b|x, y) = 〈Φ00| (|vxa〉〈vxa | ⊗ |w
y
b 〉〈w

y
b |) |Φ00〉 . (21)

Can you choose a set of measurements so that Alice and Bob win with probability pwin > 3/4?

(b) Can you find measurements that achieve the optimal quantum winning probability of cos(π/8)2 ≈
0.853?
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(c) Design a program to play the CHSH game on one of the IBM quantum computers. What’s the
best winning probability you can achieve on the IBM machines? Can you rule out a local hidden
variable model by winning more than 3/4 of the time? Is it possible to incorporate the random
question choices into the circuit?

Congratulations, if you managed to win the game with more than 3/4 probability then you’ve pretty
much generated some provably secure randomness! Nonlocal correlations (under the assumptions of
no communication between Alice and Bob) are only possible with entangled quantum systems and
so by achieving such a score you “proved” that the system was using entanglement. Moreover, such
correlations can be shown to be random, so you also “proved” randomness solely from the statistics!
Something that is completely impossible without quantum theory.

8. Further exploration

There are many more situations in which entanglement can be used to gain some advantage so feel free
to explore other areas if you wish. There are various extensions of the things seen here and also new
things.
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