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Variational bounds on the relative entropy and their applications

Motivation – Device-independence

Bell-nonlocality

A B

X Y

A B

Nonlocal correlations are inherently random.

Foundation for randomness expansion / key-distribution protocols!

Security and analysis relies on the rate (bits per round).

Optimization of von Neumann entropies
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Variational bounds on the relative entropy and their applications

Randomness generated per round

A B E

X Y

A B

ρQAQBE

Secure Laboratories

Asymptotic rates are given by:

Randomness expansion
H(AB|X = x∗,Y = y∗,E)

QKD
H(A|X = x∗,E)− H(A|X = x∗,Y = y∗,B)

Want device-independent lower bounds

DI bounds

Want to compute
r(P) = inf H(A|X = x∗,E)

where inf over all devices compatible with P.
Difficult to solve
nonconvex / unbounded dimension
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Variational bounds on the relative entropy and their applications

Variational forms and NCPOPs

Idea: Relax to a problem we can approximate...

Noncommutative polynomial optimization problems

inf Tr [ρP(Z1, . . . ,Zn)]

s.t. Tr [ρQi (Z1, . . .Zn)] ≥ wi

Ri (Z1, . . . ,Zn) ≥ 0

infimum over (H, ρ,Z1, . . . ,Zn).

Why?

(Convergent) SDP hierarchy gives lower bounds (NPA hierarchy [PNA10]).

Goal:
Search for variational bounds on entropies with an NCPOP form.
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Variational bounds on the relative entropy and their applications

Generalization: relative entropy bounds

We actually work with the relative entropy

D(ρ‖σ) = Tr [ρ(log ρ− log σ)] .

Can use it for conditional entropy

H(A|B) = −D(ρAB‖IA ⊗ ρB).

The goal

Derive something of the form

D(ρ‖σ) ≤
m∑
i=1

sup
Z

Tr [ρpi (Z)] + Tr [σqi (Z)]

with pi and qi some polynomials and with the RHS converging as m→∞.

Know D(ρ‖σ) = sup(X,Y ,z)∈F Tr [ρX ] + Tr [σY ] + z
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Variational bounds on the relative entropy and their applications

Derivation overview

1 Gauss-Radau approximation of the logarithm

ln(x) =

∫ 1

0

x − 1

t(x − 1) + 1
dt ≥

m∑
i=1

wi fti (x)

where ft(x) = x−1
t(x−1)+1

(RHS converges as m→∞).

2 Apply approximation to logarithm in D(ρ‖σ)

D(ρ‖σ) ≤
m∑
i=1

wi

ln 2
D−fti

(ρ‖σ).

3 Each D−ft (ρ‖σ) admits a variational form

D−ft (ρ‖σ) = −
1

t
inf

Z∈B(H)
{Tr [ρ(I + Z + Z∗ + (1− t)Z∗Z)] + tTr [σZZ∗]}

Main Result

D(ρ‖σ) ≤ −
m∑
i=1

wi

ti ln 2
inf

Z∈B(H)
{Tr [ρ(I + Z + Z∗ + (1− ti )Z

∗Z)] + tiTr [σZZ∗]}

and RHS converges as m→∞.
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Variational bounds on the relative entropy and their applications

Application: Device-independence

H(A|B) = −D(ρAB‖IA ⊗ ρB )

Theorem

The rate inf H(A|X = x∗,QE ) is never smaller than

cm+ inf
strategies

m−1∑
i=1

wi

ti ln 2

∑
a

Tr
[
ρQAQE (Ma|x∗ ⊗ (Za,i + Z∗a,i + (1− ti )Z

∗
a,iZa,i ) + tiZa,iZ

∗
a,i )
]
.

Remarks

Can now be easily relaxed to an NCPOP and solved using NPA [PNA10].

Drop ⊗ and impose [M, Z ] = 0.

Similar results for H(AB|X = x ,Y = y ,QE ) or H(A|XQE ) and others.
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Variational bounds on the relative entropy and their applications

Results I – Recovering tight bounds for the CHSH game

Bounding inf H(A|X = 0,QE )
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Variational bounds on the relative entropy and their applications

Results II – Improved DIQKD rates

Bounding inf H(A|X = 0,QE )− H(A|X = 0,Y = 2,B)
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Variational bounds on the relative entropy and their applications

Application: squashed entanglement

The squashed entanglement [CW04] for a bipartite state ρAB is defined as

E(A : B) := inf
TrE [ρABE ]=ρAB

I (A : B|E) .

Operationally relevant quantity: upper bounds on distillable entanglement /
key [Chr06, CEH+07, CSW12, Wil16].

Many desirable properties: additivity, monotonicity under LOCC, monogamy. . .

Difficult to solve
nonconvex / unbounded dimension

Suppose ρABED is pure, then

I (A : B|E) = H(A|D) + H(A|E)

Em(A : B) = inf
ρABDE

Hm(A|D) + Hm(A|E)
m-th variational
lower bound

Can derive bounds:

Em(A : B) ≤ E(A : B) ≤ Em(A : B) +
2dA − 2

m2 ln 2

SDP lower bounds via NPA hierarchy!
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Results - Werner state squashed entanglement

Consider a two-qubit Werner state

ρ = p
Πsym

Tr [Πsym]
+ (1− p)

Πasym

Tr [Πasym]

with p ∈ [0, 1].

Using variational lower bounds and heuristic upper bounds we find
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Conclusion

Summary

Technical result: convergent variational upper bounds on D(ρ‖σ).

Application 1: Improved lower bounds on DI protocol rates.

Application 2: SDP lower bounds on squashed entanglement.

Outlook

More efficient computations?

Convergence of the numerics?

Other applications?
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Variational bounds on the relative entropy and their applications

Device-independent lower bounds

Fix some linear constraint(s) C on the joint probability distribution of the devices pAB|XY . E.g.

1

4

∑
xy=a⊕b

p(ab|xy) ≥ 0.8 .

A strategy for C is a tuple (QAQBQE , ρ, {{Ma|x}a}x , {{Nb|y}b}y ) such that

p(ab|xy) = Tr
[
ρ(Ma|x ⊗ Nb|y ⊗ IE )

]
satisfies the constraints in C .

Through the post measurement state

ρAQE
=
∑
a

|a〉〈a| ⊗ TrQAQB

[
(Ma|x∗ ⊗ I )ρ

]
H(A|X = x∗,QE )

DI bounds

Want to compute
r(C) = inf H(A|X = x∗,E)

where inf over all strategies compatible with C .

Difficult to solve
nonconvex / unbounded dimension
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Bonus results – DICKA setting (Holz inequality)

Bounding inf H(A|X = 0,QE )
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Our technique m = 2
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Our technique m = 8

NPA level: 2 + ABZ
SDP runtime: seconds
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Bonus results – Generalized CHSH (α = 1.1)

Bounding inf H(A|X = 0,QE ) Bα = α(〈A0B0〉+ 〈A0B1〉) + 〈A1B0〉 − 〈A1B1〉
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Bonus results – Generalized CHSH (α = 0.9)
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