Variational bounds on the relative entropy and their applications

Peter Brown, Hamza Fawzi and Omar Fawzi

> Paper 1: arXiv: 2106.13692
> Paper 2: arXiv this week

Mar 072022

Motivation - Device-independence

Bell-nonlocality

Motivation - Device-independence

Bell-nonlocality

- Nonlocal correlations are inherently random.

Motivation - Device-independence

Bell-nonlocality

- Nonlocal correlations are inherently random.
- Foundation for randomness expansion / key-distribution protocols!

Motivation - Device-independence

Bell-nonlocality

- Nonlocal correlations are inherently random.
- Foundation for randomness expansion / key-distribution protocols!

■ Security and analysis relies on the rate (bits per round).

Motivation - Device-independence

Bell-nonlocality

- Nonlocal correlations are inherently random.
- Foundation for randomness expansion / key-distribution protocols!
- Security and analysis relies on the rate (bits per round).

Randomness generated per round

Randomness generated per round

$$
\rho_{Q_{A} Q_{B} E}
$$

Asymptotic rates are given by:

- Randomness expansion

$$
H\left(A B \mid X=x^{*}, Y=y^{*}, E\right)
$$

- QKD

$$
H\left(A \mid X=x^{*}, E\right)-H\left(A \mid X=x^{*}, Y=y^{*}, B\right)
$$

Randomness generated per round

Asymptotic rates are given by:

- Randomness expansion

$$
\begin{gathered}
H\left(A B \mid X=x^{*}, Y=y^{*}, E\right) \\
H\left(A \mid X=x^{*}, E\right)-\begin{array}{l}
H\left(A \mid X=x^{*}, Y=y^{*}, B\right) \\
\text { Want device-independent lower bounds }
\end{array}
\end{gathered}
$$

- QKD

Randomness generated per round

Asymptotic rates are given by:

$$
\rho_{Q_{A} Q_{B} E}
$$

- Randomness expansion

$$
\begin{gathered}
H\left(A B \mid X=x^{*}, Y=y^{*}, E\right) \\
H\left(A \mid X=x^{*}, E\right)-\begin{array}{l}
H\left(A \mid X=x^{*}, Y=y^{*}, B\right) \\
\text { Want device-independent lower bounds }
\end{array}
\end{gathered}
$$

- QKD

DI bounds

Want to compute

$$
r(P)=\inf \quad H\left(A \mid X=x^{*}, E\right)
$$

where inf over all devices compatible with P.

Randomness generated per round

- Randomness expansion

$$
\begin{gathered}
H\left(A B \mid X=x^{*}, Y=y^{*}, E\right) \\
H\left(A \mid X=x^{*}, E\right)-\begin{array}{l}
H\left(A \mid X=x^{*}, Y=y^{*}, B\right) \\
\text { Want device-independent lower bounds }
\end{array}
\end{gathered}
$$

- QKD

DI bounds

Want to compute

$$
r(P)=\inf H\left(A \mid X=x^{*}, E\right)
$$

where inf over all devices compatible with P.

Difficult to solve nonconvex / unbounded dimension

Variational forms and NCPOPs

Idea: Relax to a problem we can approximate...

Variational forms and NCPOPs

Idea: Relax to a problem we can approximate...
Noncommutative polynomial optimization problems

$$
\begin{array}{ll}
\text { inf } & \operatorname{Tr}\left[\rho P\left(Z_{1}, \ldots, Z_{n}\right)\right] \\
\text { s.t. } & \operatorname{Tr}\left[\rho Q_{i}\left(Z_{1}, \ldots Z_{n}\right)\right] \geq w_{i} \\
& R_{i}\left(Z_{1}, \ldots, Z_{n}\right) \geq 0
\end{array}
$$

infimum over $\left(\mathcal{H}, \rho, Z_{1}, \ldots, Z_{n}\right)$.

Variational forms and NCPOPs

Idea: Relax to a problem we can approximate...
Noncommutative polynomial optimization problems

$$
\begin{array}{ll}
\text { inf } & \operatorname{Tr}\left[\rho P\left(Z_{1}, \ldots, Z_{n}\right)\right] \\
\text { s.t. } & \operatorname{Tr}\left[\rho Q_{i}\left(Z_{1}, \ldots Z_{n}\right)\right] \geq w_{i} \\
& R_{i}\left(Z_{1}, \ldots, Z_{n}\right) \geq 0
\end{array}
$$

infimum over $\left(\mathcal{H}, \rho, Z_{1}, \ldots, Z_{n}\right)$.

Why?

(Convergent) SDP hierarchy gives lower bounds (NPA hierarchy [PNA10]).

Variational forms and NCPOPs

Idea: Relax to a problem we can approximate...
Noncommutative polynomial optimization problems

$$
\begin{array}{ll}
\text { inf } & \operatorname{Tr}\left[\rho P\left(Z_{1}, \ldots, Z_{n}\right)\right] \\
\text { s.t. } & \operatorname{Tr}\left[\rho Q_{i}\left(Z_{1}, \ldots Z_{n}\right)\right] \geq w_{i} \\
& R_{i}\left(Z_{1}, \ldots, Z_{n}\right) \geq 0
\end{array}
$$

infimum over $\left(\mathcal{H}, \rho, Z_{1}, \ldots, Z_{n}\right)$.

Why?

(Convergent) SDP hierarchy gives lower bounds (NPA hierarchy [PNA10]).

Goal:

Search for variational bounds on entropies with an NCPOP form.

Generalization: relative entropy bounds

We actually work with the relative entropy

$$
D(\rho \| \sigma)=\operatorname{Tr}[\rho(\log \rho-\log \sigma)]
$$

Generalization: relative entropy bounds

We actually work with the relative entropy

$$
D(\rho \| \sigma)=\operatorname{Tr}[\rho(\log \rho-\log \sigma)]
$$

Can use it for conditional entropy

$$
H(A \mid B)=-D\left(\rho_{A B} \| I_{A} \otimes \rho_{B}\right)
$$

Generalization: relative entropy bounds

We actually work with the relative entropy

$$
D(\rho \| \sigma)=\operatorname{Tr}[\rho(\log \rho-\log \sigma)]
$$

Can use it for conditional entropy

$$
H(A \mid B)=-D\left(\rho_{A B} \| I_{A} \otimes \rho_{B}\right) .
$$

The goal

Derive something of the form

$$
D(\rho \| \sigma) \leq \sum_{i=1}^{m} \sup _{Z} \operatorname{Tr}\left[\rho p_{i}(Z)\right]+\operatorname{Tr}\left[\sigma q_{i}(Z)\right]
$$

with p_{i} and q_{i} some polynomials and with the RHS converging as $m \rightarrow \infty$.

Generalization: relative entropy bounds

We actually work with the relative entropy

$$
D(\rho \| \sigma)=\operatorname{Tr}[\rho(\log \rho-\log \sigma)]
$$

Can use it for conditional entropy

$$
H(A \mid B)=-D\left(\rho_{A B} \| I_{A} \otimes \rho_{B}\right) .
$$

The goal
Know $D(\rho \| \sigma)=\sup _{(X, Y, z) \in \mathcal{F}} \operatorname{Tr}[\rho X]+\operatorname{Tr}[\sigma Y]+z$
Derive something of the form

$$
D(\rho \| \sigma) \leq \sum_{i=1}^{m} \sup _{Z} \operatorname{Tr}\left[\rho p_{i}(Z)\right]+\operatorname{Tr}\left[\sigma q_{i}(Z)\right]
$$

with p_{i} and q_{i} some polynomials and with the RHS converging as $m \rightarrow \infty$.

Derivation overview

1 Gauss-Radau approximation of the logarithm

$$
\ln (x)=\int_{0}^{1} \frac{x-1}{t(x-1)+1} \mathrm{~d} t \geq \sum_{i=1}^{m} w_{i} f_{t_{i}}(x)
$$

where $f_{t}(x)=\frac{x-1}{t(x-1)+1}$ (RHS converges as $m \rightarrow \infty$).

Derivation overview

1 Gauss-Radau approximation of the logarithm

$$
\ln (x)=\int_{0}^{1} \frac{x-1}{t(x-1)+1} \mathrm{~d} t \geq \sum_{i=1}^{m} w_{i} f_{t_{i}}(x)
$$

where $f_{t}(x)=\frac{x-1}{t(x-1)+1}$ (RHS converges as $m \rightarrow \infty$).
2 Apply approximation to logarithm in $D(\rho \| \sigma)$

$$
D(\rho \| \sigma) \leq \sum_{i=1}^{m} \frac{w_{i}}{\ln 2} D_{-f_{t_{i}}}(\rho \| \sigma)
$$

Derivation overview

1 Gauss-Radau approximation of the logarithm

$$
\ln (x)=\int_{0}^{1} \frac{x-1}{t(x-1)+1} \mathrm{~d} t \geq \sum_{i=1}^{m} w_{i} f_{t_{i}}(x)
$$

where $f_{t}(x)=\frac{x-1}{t(x-1)+1}$ (RHS converges as $m \rightarrow \infty$).
2 Apply approximation to logarithm in $D(\rho \| \sigma)$

$$
D(\rho \| \sigma) \leq \sum_{i=1}^{m} \frac{w_{i}}{\ln 2} D_{-f_{t_{i}}}(\rho \| \sigma)
$$

3 Each $D_{-f_{t}}(\rho \| \sigma)$ admits a variational form

$$
D_{-f_{t}}(\rho \| \sigma)=-\frac{1}{t} \inf _{Z \in B(H)}\left\{\operatorname{Tr}\left[\rho\left(I+Z+Z^{*}+(1-t) Z^{*} Z\right)\right]+t \operatorname{Tr}\left[\sigma Z Z^{*}\right]\right\}
$$

Derivation overview

1 Gauss-Radau approximation of the logarithm

$$
\ln (x)=\int_{0}^{1} \frac{x-1}{t(x-1)+1} \mathrm{~d} t \geq \sum_{i=1}^{m} w_{i} f_{t_{i}}(x)
$$

where $f_{t}(x)=\frac{x-1}{t(x-1)+1}$ (RHS converges as $m \rightarrow \infty$).
2 Apply approximation to logarithm in $D(\rho \| \sigma)$

$$
D(\rho \| \sigma) \leq \sum_{i=1}^{m} \frac{w_{i}}{\ln 2} D_{-f_{t_{i}}}(\rho \| \sigma)
$$

3 Each $D_{-f_{t}}(\rho \| \sigma)$ admits a variational form

$$
D_{-f_{t}}(\rho \| \sigma)=-\frac{1}{t} \inf _{Z \in B(H)}\left\{\operatorname{Tr}\left[\rho\left(I+Z+Z^{*}+(1-t) Z^{*} Z\right)\right]+t \operatorname{Tr}\left[\sigma Z Z^{*}\right]\right\}
$$

Main Result

$$
D(\rho \| \sigma) \leq-\sum_{i=1}^{m} \frac{w_{i}}{t_{i} \ln 2} \inf _{Z \in B(H)}\left\{\operatorname{Tr}\left[\rho\left(I+Z+Z^{*}+\left(1-t_{i}\right) Z^{*} Z\right)\right]+t_{i} \operatorname{Tr}\left[\sigma Z Z^{*}\right]\right\}
$$

and RHS converges as $m \rightarrow \infty$.

Application: Device-independence

$$
H(A \mid B)=-D\left(\rho_{A B} \| I_{A} \otimes \rho_{B}\right)
$$

Theorem

The rate $\inf H\left(A \mid X=x^{*}, Q_{E}\right)$ is never smaller than
$c_{m}+\inf _{\text {strategies }} \sum_{i=1}^{m-1} \frac{w_{i}}{t_{i} \ln 2} \sum_{a} \operatorname{Tr}\left[\rho_{Q_{A} Q_{E}}\left(M_{a \mid \times^{*}} \otimes\left(Z_{a, i}+Z_{a, i}^{*}+\left(1-t_{i}\right) Z_{a, i}^{*} Z_{a, i}\right)+t_{i} Z_{a, i} Z_{a, i}^{*}\right)\right]$.

Application: Device-independence

$$
H(A \mid B)=-D\left(\rho_{A B} \| I_{A} \otimes \rho_{B}\right)
$$

Theorem

The rate $\inf H\left(A \mid X=x^{*}, Q_{E}\right)$ is never smaller than
$c_{m}+\inf _{\text {strategies }} \sum_{i=1}^{m-1} \frac{w_{i}}{t_{i} \ln 2} \sum_{a} \operatorname{Tr}\left[\rho_{Q_{A} Q_{E}}\left(M_{a \mid \times^{*}} \otimes\left(Z_{a, i}+Z_{a, i}^{*}+\left(1-t_{i}\right) Z_{a, i}^{*} Z_{a, i}\right)+t_{i} Z_{a, i} Z_{a, i}^{*}\right)\right]$.

Remarks

- Can now be easily relaxed to an NCPOP and solved using NPA [PNA10].

Application: Device-independence

$$
H(A \mid B)=-D\left(\rho_{A B} \| I_{A} \otimes \rho_{B}\right)
$$

Theorem

The rate $\inf H\left(A \mid X=x^{*}, Q_{E}\right)$ is never smaller than

$$
\begin{aligned}
& c_{m}+\inf _{\text {strategies }} \sum_{i=1}^{m-1} \frac{w_{i}}{t_{i} \ln 2} \sum_{a} \operatorname{Tr}\left[\rho_{Q_{A} Q_{E}}\left(M_{a \mid x^{*}} \otimes\left(Z_{a, i}+Z_{a, i}^{*}+\left(1-t_{i}\right) Z_{a, i}^{*} Z_{a, i}\right)+t_{i} Z_{a, i} Z_{a, i}^{*}\right)\right] . \\
& \text { Remarks }
\end{aligned}
$$

- Can now be easily relaxed to an NCPOP and solved using NPA [PNA10].

Application: Device-independence

$$
H(A \mid B)=-D\left(\rho_{A B} \| I_{A} \otimes \rho_{B}\right)
$$

Theorem

The rate $\inf H\left(A \mid X=x^{*}, Q_{E}\right)$ is never smaller than
$c_{m}+\inf _{\text {strategies }} \sum_{i=1}^{m-1} \frac{w_{i}}{t_{i} \ln 2} \sum_{a} \operatorname{Tr}\left[\rho_{Q_{A} Q_{E}}\left(M_{a \mid x^{*}} \otimes\left(Z_{a, i}+Z_{a, i}^{*}+\left(1-t_{i}\right) Z_{a, i}^{*} Z_{a, i}\right)+t_{i} Z_{a, i} Z_{a, i}^{*}\right)\right]$.

Remarks

- Can now be easily relaxed to an NCPOP and solved using NPA [PNA10].

■ Similar results for $H\left(A B \mid X=x, Y=y, Q_{E}\right)$ or $H\left(A \mid X Q_{E}\right)$ and others.

Results I - Recovering tight bounds for the CHSH game

Bounding $\inf H\left(A \mid X=0, Q_{E}\right)$

Results I - Recovering tight bounds for the CHSH game

Bounding $\inf H\left(A \mid X=0, Q_{E}\right)$

Results I - Recovering tight bounds for the CHSH game

Bounding $\inf H\left(A \mid X=0, Q_{E}\right)$

Results I - Recovering tight bounds for the CHSH game

Bounding $\inf H\left(A \mid X=0, Q_{E}\right)$

Results II - Improved DIQKD rates

Bounding $\inf H\left(A \mid X=0, Q_{E}\right)-H(A \mid X=0, Y=2, B)$

Application: squashed entanglement

The squashed entanglement [CW04] for a bipartite state $\rho_{A B}$ is defined as

$$
E(A: B):=\inf _{\operatorname{Tr}_{E}\left[\rho_{A B E}\right]=\rho_{A B}} I(A: B \mid E) .
$$

Application: squashed entanglement

The squashed entanglement [CW04] for a bipartite state $\rho_{A B}$ is defined as

$$
E(A: B):=\inf _{\operatorname{Tr}_{E}\left[\rho_{A B E}\right]=\rho_{A B}} I(A: B \mid E) .
$$

- Operationally relevant quantity: upper bounds on distillable entanglement / key [Chr06, CEH ${ }^{+} 07$, CSW12, Wil16].

Application: squashed entanglement

The squashed entanglement [CW04] for a bipartite state $\rho_{A B}$ is defined as

$$
E(A: B):=\inf _{\operatorname{Tr}_{E}\left[\rho_{A B E}\right]=\rho_{A B}} I(A: B \mid E) .
$$

- Operationally relevant quantity: upper bounds on distillable entanglement / key [Chr06, $\mathrm{CEH}^{+} 07, \mathrm{CSW} 12$, Wil16].
■ Many desirable properties: additivity, monotonicity under LOCC, monogamy. . .

Application: squashed entanglement

The squashed entanglement [CW04] for a bipartite state $\rho_{A B}$ is defined as

$$
E(A: B):=\inf _{\operatorname{Tr}_{E}\left[P_{A B E}\right] \equiv \rho_{A B}} I(A: B \mid E)
$$

■ Operationally relevant quantity: upper bounds on distillable entanglement / key [Chr06, $\mathrm{CEH}^{+} 07, \mathrm{CSW} 12$, Wil16].
■ Many desirable properties: additivity, monotonicity under LOCC, monogamy. . .

Application: squashed entanglement

The squashed entanglement [CW04] for a bipartite state $\rho_{A B}$ is defined as

$$
E(A: B):=\inf _{\operatorname{Tr}_{E}\left[P_{A B E}\right] \equiv \rho_{A B}} I(A: B \mid E)
$$

■ Operationally relevant quantity: upper bounds on distillable entanglement / key [Chr06, CEH ${ }^{+} 07$, CSW12, Wil16].
■ Many desirable properties: additivity, monotonicity under LOCC, monogamy. . .

Suppose $\rho_{A B E D}$ is pure, then

$$
I(A: B \mid E)=H(A \mid D)+H(A \mid E)
$$

Application: squashed entanglement

The squashed entanglement [CW04] for a bipartite state $\rho_{A B}$ is defined as

$$
E(A: B):=\inf _{\operatorname{Tr}_{E}\left[P_{A B E}\right]=\rho_{A B}} I(A: B \mid E)
$$

■ Operationally relevant quantity: upper bounds on distillable entanglement / key [Chr06, CEH ${ }^{+} 07$, CSW12, Wil16].
■ Many desirable properties: additivity, monotonicity under LOCC, monogamy. . .

Suppose $\rho_{A B E D}$ is pure, then

$$
\begin{gathered}
I(A: B \mid E)=H(A \mid D)+H(A \mid E) \\
E_{m}(A: B)=\inf _{\rho_{A B D E}} H_{m}(A \mid D)+H_{m}(A \mid E)
\end{gathered}
$$

Application: squashed entanglement

The squashed entanglement [CW04] for a bipartite state $\rho_{A B}$ is defined as

$$
E(A: B):=\inf _{\operatorname{Tr}_{E}\left[P_{A B E}\right]=\rho_{A B}} I(A: B \mid E)
$$

■ Operationally relevant quantity: upper bounds on distillable entanglement / key [Chr06, CEH ${ }^{+} 07$, CSW12, Wil16].
■ Many desirable properties: additivity, monotonicity under LOCC, monogamy. . .

Suppose $\rho_{A B E D}$ is pure, then

$$
\begin{gathered}
I(A: B \mid E)=H(A \mid D)+H(A \mid E) \\
E_{m}(A: B)=\inf _{\rho_{A B D E}} H_{m}(A \mid D)+H_{m}(A \mid E)
\end{gathered}
$$

Application: squashed entanglement

The squashed entanglement [CW04] for a bipartite state $\rho_{A B}$ is defined as

$$
E(A: B):=\inf _{\operatorname{Tr}_{E}\left[\nmid P_{A B E}\right]=\rho_{A B}} I(A: B \mid E)
$$

■ Operationally relevant quantity: upper bounds on distillable entanglement / key [Chr06, $\mathrm{CEH}^{+} 07, \mathrm{CSW} 12$, Wil16].
■ Many desirable properties: additivity, monotonicity under LOCC, monogamy. . .

Suppose $\rho_{A B E D}$ is pure, then

$$
\begin{gathered}
I(A: B \mid E)=H(A \mid D)+H(A \mid E) \\
E_{m}(A: B)=\inf _{\rho_{A B D E}} H_{m}(A \mid D)+H_{m}(A \mid E)
\end{gathered}
$$

■ Can derive bounds:

$$
E_{m}(A: B) \leq E(A: B) \leq E_{m}(A: B)+\frac{2 d_{A}-2}{m^{2} \ln 2}
$$

Application: squashed entanglement

The squashed entanglement [CW04] for a bipartite state $\rho_{A B}$ is defined as

$$
E(A: B):=\inf _{\operatorname{Tr}_{E}\left[\nmid P_{A B E}\right]=\rho_{A B}} I(A: B \mid E)
$$

■ Operationally relevant quantity: upper bounds on distillable entanglement / key [Chr06, $\mathrm{CEH}^{+} 07, \mathrm{CSW} 12$, Wil16].
■ Many desirable properties: additivity, monotonicity under LOCC, monogamy. . .

Suppose $\rho_{A B E D}$ is pure, then

$$
\begin{gathered}
I(A: B \mid E)=H(A \mid D)+H(A \mid E) \\
E_{m}(A: B)=\inf _{\rho_{A B D E}} H_{m}(A \mid D)+H_{m}(A \mid E)
\end{gathered}
$$

■ Can derive bounds:

$$
E_{m}(A: B) \leq E(A: B) \leq E_{m}(A: B)+\frac{2 d_{A}-2}{m^{2} \ln 2}
$$

- SDP lower bounds via NPA hierarchy!

Results - Werner state squashed entanglement

Consider a two-qubit Werner state

$$
\rho=p \frac{\Pi_{\text {sym }}}{\operatorname{Tr}\left[\Pi_{\text {sym }}\right]}+(1-p) \frac{\Pi_{\text {asym }}}{\operatorname{Tr}\left[\Pi_{\text {asym }}\right]}
$$

with $p \in[0,1]$.

Results - Werner state squashed entanglement

Consider a two-qubit Werner state

$$
\rho=p \frac{\Pi_{\text {sym }}}{\operatorname{Tr}\left[\Pi_{\text {sym }}\right]}+(1-p) \frac{\Pi_{\text {asym }}}{\operatorname{Tr}\left[\Pi_{\text {asym }}\right]}
$$

with $p \in[0,1]$.
Using variational lower bounds and heuristic upper bounds we find

$$
d_{A}=d_{B}=2
$$

Conclusion

Summary

- Technical result: convergent variational upper bounds on $D(\rho \| \sigma)$.

Conclusion

Summary

■ Technical result: convergent variational upper bounds on $D(\rho \| \sigma)$.

- Application 1: Improved lower bounds on DI protocol rates.

Conclusion

Summary

■ Technical result: convergent variational upper bounds on $D(\rho \| \sigma)$.

- Application 1: Improved lower bounds on DI protocol rates.

■ Application 2: SDP lower bounds on squashed entanglement.

Conclusion

Summary

■ Technical result: convergent variational upper bounds on $D(\rho \| \sigma)$.

- Application 1: Improved lower bounds on DI protocol rates.

■ Application 2: SDP lower bounds on squashed entanglement.

Outlook

■ More efficient computations?

Conclusion

Summary

- Technical result: convergent variational upper bounds on $D(\rho \| \sigma)$.
- Application 1: Improved lower bounds on DI protocol rates.

■ Application 2: SDP lower bounds on squashed entanglement.

Outlook

■ More efficient computations?
■ Convergence of the numerics?

Conclusion

Summary

- Technical result: convergent variational upper bounds on $D(\rho \| \sigma)$.
- Application 1: Improved lower bounds on DI protocol rates.

■ Application 2: SDP lower bounds on squashed entanglement.

Outlook

■ More efficient computations?

- Convergence of the numerics?

■ Other applications?

Bibliography

Matthias Christandl, Artur Ekert, Michal Horodecki, Pawel Horodecki, Jonathan Oppenheim, and Renato Renner. Unifying classical and quantum key distillation.
In Theory of Cryptography Conference, pages 456-478. Springer, 2007.
Matthias Christandl.
The structure of bipartite quantum states-insights from group theory and cryptography.
arXiv preprint quant-ph/0604183, 2006.
Matthias Christandl, Norbert Schuch, and Andreas Winter.
Entanglement of the antisymmetric state.
Communications in Mathematical Physics, 311(2):397-422, 2012.
Matthias Christandl and Andreas Winter.
"squashed entanglement": an additive entanglement measure.
Journal of mathematical physics, 45(3):829-840, 2004.
Stefano Pironio, Antonio Acín, Nicolas Brunner, Nicolas Gisin, Serge Massar, and Valerio Scarani.
Device-independent quantum key distribution secure against collective attacks.
New Journal of Physics, 11(4):045021, 2009.
Stefano Pironio, Miguel Navascués, and Antonio Acín.
Convergent relaxations of polynomial optimization problems with noncommuting variables.
SIAM Journal on Optimization, 20(5):2157-2180, 2010.
Mark M Wilde.
Squashed entanglement and approximate private states.
Quantum Information Processing, 15(11):4563-4580, 2016.

Device-independent lower bounds

Fix some linear constraint(s) C on the joint probability distribution of the devices $p_{A B \mid X Y}$. E.g.

$$
\frac{1}{4} \sum_{x y=a \oplus b} p(a b \mid x y) \geq 0.8
$$

Device-independent lower bounds

Fix some linear constraint(s) C on the joint probability distribution of the devices $p_{A B \mid X Y}$. E.g.

$$
\frac{1}{4} \sum_{x y=a \oplus b} p(a b \mid x y) \geq 0.8
$$

A strategy for C is a tuple $\left(Q_{A} Q_{B} Q_{E}, \rho,\left\{\left\{M_{a \mid x}\right\}_{a}\right\}_{x},\left\{\left\{N_{b \mid y}\right\}_{b}\right\}_{y}\right)$ such that

$$
p(a b \mid x y)=\operatorname{Tr}\left[\rho\left(M_{a \mid x} \otimes N_{b \mid y} \otimes I_{E}\right)\right]
$$

satisfies the constraints in C.

Device-independent lower bounds

Fix some linear constraint(s) C on the joint probability distribution of the devices $p_{A B \mid X Y}$. E.g.

$$
\frac{1}{4} \sum_{x y=a \oplus b} p(a b \mid x y) \geq 0.8 .
$$

A strategy for C is a tuple $\left(Q_{A} Q_{B} Q_{E}, \rho,\left\{\left\{M_{a \mid x}\right\}_{a}\right\}_{x},\left\{\left\{N_{b \mid y}\right\}_{b}\right\}_{y}\right)$ such that

$$
p(a b \mid x y)=\operatorname{Tr}\left[\rho\left(M_{a \mid x} \otimes N_{b \mid y} \otimes I_{E}\right)\right]
$$

satisfies the constraints in C.
Through the post measurement state

$$
\rho_{A Q_{E}}=\sum_{a}|a\rangle\langle a| \otimes \operatorname{Tr}_{Q_{A} Q_{B}}\left[\left(M_{a \mid x^{*}} \otimes I\right) \rho\right] \quad H\left(A \mid X=x^{*}, Q_{E}\right)
$$

Device-independent lower bounds

Fix some linear constraint(s) C on the joint probability distribution of the devices $p_{A B \mid X Y}$. E.g.

$$
\frac{1}{4} \sum_{x y=a \oplus b} p(a b \mid x y) \geq 0.8 .
$$

A strategy for C is a tuple $\left(Q_{A} Q_{B} Q_{E}, \rho,\left\{\left\{M_{a \mid x}\right\}_{a}\right\}_{x},\left\{\left\{N_{b \mid y}\right\}_{b}\right\}_{y}\right)$ such that

$$
p(a b \mid x y)=\operatorname{Tr}\left[\rho\left(M_{a \mid x} \otimes N_{b \mid y} \otimes I_{E}\right)\right]
$$

satisfies the constraints in C.
Through the post measurement state

$$
\rho_{A Q_{E}}=\sum_{a}|a\rangle\langle a| \otimes \operatorname{Tr}_{Q_{A} Q_{B}}\left[\left(M_{a \mid x^{*}} \otimes I\right) \rho\right] \quad H\left(A \mid X=x^{*}, Q_{E}\right)
$$

DI bounds

Want to compute

$$
r(C)=\inf \quad H\left(A \mid X=x^{*}, E\right)
$$

where inf over all strategies compatible with C.

Device-independent lower bounds

Fix some linear constraint(s) C on the joint probability distribution of the devices $p_{A B \mid X Y}$. E.g.

$$
\frac{1}{4} \sum_{x y=a \oplus b} p(a b \mid x y) \geq 0.8
$$

A strategy for C is a tuple $\left(Q_{A} Q_{B} Q_{E}, \rho,\left\{\left\{M_{a \mid x}\right\}_{a}\right\}_{x},\left\{\left\{N_{b \mid y}\right\}_{b}\right\}_{y}\right)$ such that

$$
p(a b \mid x y)=\operatorname{Tr}\left[\rho\left(M_{a \mid x} \otimes N_{b \mid y} \otimes I_{E}\right)\right]
$$

satisfies the constraints in C.
Through the post measurement state

$$
\rho_{A Q_{E}}=\sum_{a}|a\rangle\langle a| \otimes \operatorname{Tr}_{Q_{A} Q_{B}}\left[\left(M_{a \mid x^{*}} \otimes I\right) \rho\right] \quad H\left(A \mid X=x^{*}, Q_{E}\right)
$$

DI bounds

Want to compute

$$
r(C)=\inf H\left(A \mid X=x^{*}, E\right)
$$

where inf over all strategies compatible with C.

Bonus results - DICKA setting (Holz inequality)

Bounding $\inf H\left(A \mid X=0, Q_{E}\right)$

Bonus results - DICKA setting (Holz inequality)

Bounding $\inf H\left(A \mid X=0, Q_{E}\right)$

Bonus results - Generalized CHSH $(\alpha=1.1)$

Bounding $\inf H\left(A \mid X=0, Q_{E}\right)$

$$
B_{\alpha}=\alpha\left(\left\langle A_{0} B_{0}\right\rangle+\left\langle A_{0} B_{1}\right\rangle\right)+\left\langle A_{1} B_{0}\right\rangle-\left\langle A_{1} B_{1}\right\rangle
$$

Bonus results - Generalized CHSH $(\alpha=1.1)$

Bounding $\inf H\left(A \mid X=0, Q_{E}\right)$

$$
B_{\alpha}=\alpha\left(\left\langle A_{0} B_{0}\right\rangle+\left\langle A_{0} B_{1}\right\rangle\right)+\left\langle A_{1} B_{0}\right\rangle-\left\langle A_{1} B_{1}\right\rangle
$$

Bonus results - Generalized CHSH $(\alpha=0.9)$

Bounding $\inf H\left(A \mid X=0, Q_{E}\right)$

$$
B_{\alpha}=\alpha\left(\left\langle A_{0} B_{0}\right\rangle+\left\langle A_{0} B_{1}\right\rangle\right)+\left\langle A_{1} B_{0}\right\rangle-\left\langle A_{1} B_{1}\right\rangle
$$

