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Nonlocal correlations are inherently random.

Foundation for randomness expansion / key-distribution protocols!

Security and analysis relies on the rate (bits per round).
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Device-independent lower bounds

Fix some linear constraint(s) C on the joint probability distribution of the devices pAB|XY . E.g.

1

4

∑
xy=a⊕b

p(ab|xy) ≥ 0.8 .

A strategy for C is a tuple (QAQBQE , ρ, {{Ma|x}a}x , {{Nb|y}b}y ) such that

p(ab|xy) = Tr
[
ρ(Ma|x ⊗ Nb|y ⊗ IE )

]
satisfies the constraints in C .

Through the post measurement state

ρAQE
=
∑
a

|a〉〈a| ⊗ TrQAQB

[
(Ma|x∗ ⊗ I )ρ

]
H(A|X = x∗,QE )

DI bounds

Want to compute
r(C) = inf H(A|X = x∗,E)

where inf over all strategies compatible with C .

Difficult to solve
nonconvex / unbounded dimension
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Device-independent lower bounds on the conditional von Neumann entropy

Previous works

Approaches

Analytical bounds [PAB+09, GMKB21, MPW21]
Reduce to qubits and solve explicitly
tight bounds / restricted scope

The min-entropy Hmin

Write as a noncommutative polynomial optimization problem (NCPOP) and apply
NPA.
easy to compute / poor bounds

inf Tr [ρp(Z)]

Recent works [TSG+19, BFF21]
Different lower bounding NCPOPs.
Better than Hmin / room for improvement

Our new approach
Define a sequence

Hm(ρ) = inf
Z1,...,Zm∈B(H)

Tr [ρ q(Z1, . . . ,Zm)] (1)

such that Hm ≤ H and Hm → H as m→∞.
close to optimal / more efficient / wider scope

Numerical approaches can
complement analytical
ones
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Generalization: relative entropy bounds

We actually work with the relative entropy

D(ρ‖σ) = Tr [ρ(log ρ− log σ)] .

Can use it for conditional entropy

H(A|B) = −D(ρAB‖IA ⊗ ρB).

The goal

Derive something of the form

D(ρ‖σ) ≤
m∑
i=1

inf
Z

Tr [ρpi (Z)] + Tr [σqi (Z)]

with pi and qi some polynomials and with the RHS converging as m→∞.
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Device-independent lower bounds on the conditional von Neumann entropy

Derivation overview

1 Gauss-Radau approximation of the logarithm

ln(x) =

∫ 1

0

x − 1

t(x − 1) + 1
dt ≥

m∑
i=1

wi fti (x)

where ft(x) = x−1
t(x−1)+1

(RHS converges as m→∞).

2 Apply approximation to logarithm in D(ρ‖σ)

D(ρ‖σ) ≤
m∑
i=1

wi

ln 2
Dfti

(ρ‖σ).

3 Each Dft (ρ‖σ) admits a variational form

Dft (ρ‖σ) =
1

t
inf

Z∈B(H)
{Tr [ρ(I + Z + Z∗ + (1− t)Z∗Z)] + tTr [σZZ∗]}

Result

D(ρ‖σ) ≤
m∑
i=1

wi

ti ln 2
inf

Z∈B(H)
{Tr [ρ(I + Z + Z∗ + (1− ti )Z

∗Z)] + tiTr [σZZ∗]}

and RHS converges as m→∞.
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Device-independent lower bounds on the conditional von Neumann entropy

Lower bound on H(A|X = x∗,QE )

H(A|B) = −D(ρAB‖IA ⊗ ρB )

Theorem

The rate inf H(A|X = x∗,QE ) is never smaller than

cm+ inf
strategies

m−1∑
i=1

wi

ti ln 2

∑
a

Tr
[
ρQAQE (Ma|x∗ ⊗ (Za,i + Z∗a,i + (1− ti )Z

∗
a,iZa,i ) + tiZa,iZ

∗
a,i )
]
.

Remarks

Can now be easily relaxed to an NCPOP and solved using NPA [PNA10].

Drop ⊗ and impose [M, Z ] = 0.

NPA hierarchy converges as ‖Z‖ can be bounded.

Similar results for H(AB|X = x ,Y = y ,QE ) or H(A|XQE ) and others.

Caveats

Number of operators grows with m. Use inf
∑

i · · · ≥
∑

i inf . . . to stop such scaling
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Device-independent lower bounds on the conditional von Neumann entropy

Optimizing experiments

Experiment

α β γ

PAB|XY

Distribution depends on parameters – Pα,β,γ(a, b|x , y)
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Device-independent lower bounds on the conditional von Neumann entropy

Optimizing experiments

Experiment

α β γ

PAB|XY

Rate calculations

Bound on inf H(A|E)Using PAB|XY we can compute rate.

p(b) = inf
X

Tr [CX ]

s.t. Tr [FiX ] = bi ∀i
X ≥ 0

d(b) = sup
λ,Y

∑
i

λibi

s.t. C −
∑
i

λiFi − Y ≥ 0

Y ≥ 0

g(b) =
∑

i λibi
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Results

A B

X Y

A BApplied our method to compute rates
for DIRNG and DIQKD.

Experimental parameters: (θ, a0, a1, . . . , b0, b1, . . . )
where

|ψ〉QAQB
= cos(θ) |00〉+ sin(θ) |11〉

M0|x =
1

2
(I + cos(ax)σz + sin(ax)σx)

N0|y =
1

2
(I + cos(by )σz + sin(by )σx)

Looked at different constraint sets C :
CHSH score

1
4

∑
xy=a⊕b

p(ab|xy) ≥ ω

Full distribution
p(ab|xy) = cabxy ∀(a, b, x , y)

Investigated detection efficiency noise model.
Independent probability η ∈ [0, 1] that each device succeeds.
Device failures recorded as a particular outcome.
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Results I – Recovering tight bounds for the CHSH game

Bounding inf H(A|X = 0,QE )
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Results II – Improved randomness expansion rates

Bounding inf H(AB|X = 0,Y = 0,QE )
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Results III – Improved DIQKD rates

Bounding inf H(A|X = 0,QE )− H(A|X = 0,Y = 2,B)
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NPA level: 2 + ABZ
SDP runtime: seconds

See also talk by Michele Masini
(Wednesday 15:30)
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Conclusion

Summary

New general method to compute rates of DI protocols.

Convergent (in a sense) – observe practical convergence also.

Outperforms all previous methods (+ faster)

Applies to infinite dimensional systems and can be used directly with EAT to prove
security.

Outlook

Better understand convergence? (commuting operator vs tensor product).

Is DIQKD feasible now? (Better experimental model / finite size analysis)

Beyond DIQKD?
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Bonus results – DICKA setting (Holz inequality [HKB20])

Bounding inf H(A|X = 0,QE )
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Bonus results – Generalized CHSH [WAP21] (α = 1.1)

Bounding inf H(A|X = 0,QE ) Bα = α(〈A0B0〉+ 〈A0B1〉) + 〈A1B0〉 − 〈A1B1〉
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Bonus results – Generalized CHSH [WAP21] (α = 0.9)
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