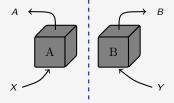
Device-independent lower bounds on the conditional von Neumann entropy

Peter Brown, Hamza Fawzi and Omar Fawzi

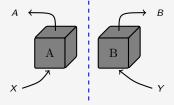
arXiv:2106.13692

Aug 31 2021

Bell-nonlocality

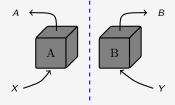


Bell-nonlocality



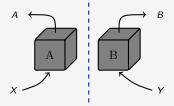
■ Nonlocal correlations are inherently random.

Bell-nonlocality



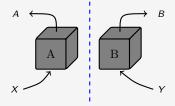
- Nonlocal correlations are inherently random.
- Foundation for randomness expansion / key-distribution protocols!

Bell-nonlocality



- Nonlocal correlations are inherently random.
- Foundation for randomness expansion / key-distribution protocols!
- Security and analysis relies on the rate (bits per round).

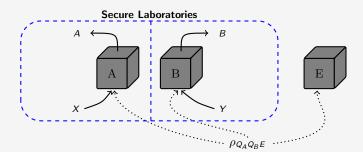
Bell-nonlocality



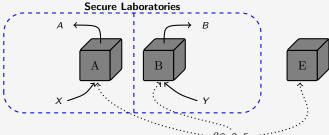
- Nonlocal correlations are inherently random.
- Foundation for randomness expansion / key-distribution protocols!
- Security and analysis relies on the rate (bits per round).

Main task of this work

Randomness generated per round



Randomness generated per round



Asymptotic rates are given by:

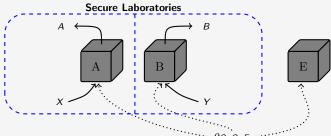
Randomness expansion

$$H(AB|X = x^*, Y = y^*, E)$$

QKD

$$H(A|X = x^*, E) - H(A|X = x^*, Y = y^*, B)$$

Randomness generated per round



Asymptotic rates are given by:

Randomness expansion

$$H(AB|X=x^*,Y=y^*,E)$$

QKD

$$(H(A|X = x^*, E)) - H(A|X = x^*, Y = y^*, B)$$

Want device-independent lower bounds

Fix some linear constraint(s) C on the joint probability distribution of the devices $p_{AB|XY}$. E.g.

$$\frac{1}{4}\sum_{xy=a\oplus b}p(ab|xy)\geq 0.8.$$

Fix some linear constraint(s) C on the joint probability distribution of the devices $p_{AB|XY}$. E.g.

$$\frac{1}{4}\sum_{xy=a\oplus b}p(ab|xy)\geq 0.8.$$

A strategy for C is a tuple $(Q_AQ_BQ_E, \rho, \{\{M_{a|x}\}_a\}_x, \{\{N_{b|y}\}_b\}_y)$ such that

$$p(ab|xy) = \operatorname{Tr}\left[\rho(M_{a|x} \otimes N_{b|y} \otimes I_E)\right]$$

satisfies the constraints in C.

Fix some linear constraint(s) C on the joint probability distribution of the devices $p_{AB|XY}$. E.g.

$$\frac{1}{4}\sum_{xy=a\oplus b}p(ab|xy)\geq 0.8.$$

A strategy for C is a tuple $(Q_AQ_BQ_E, \rho, \{\{M_{a|x}\}_a\}_x, \{\{N_{b|y}\}_b\}_y)$ such that

$$p(ab|xy) = \operatorname{Tr}\left[\rho(M_{a|x} \otimes N_{b|y} \otimes I_E)\right]$$

satisfies the constraints in C.

Through the post measurement state

$$\rho_{AQ_E} = \sum_{a} |a\rangle\langle a| \otimes \operatorname{Tr}_{Q_AQ_B} \left[(M_{a|X^*} \otimes I) \rho \right] \qquad \longrightarrow H(A|X = x^*, Q_E)$$

Fix some linear constraint(s) C on the joint probability distribution of the devices $p_{AB|XY}$. E.g.

$$\frac{1}{4}\sum_{xy=a\oplus b}p(ab|xy)\geq 0.8.$$

A strategy for C is a tuple $(Q_AQ_BQ_E, \rho, \{\{M_{a|x}\}_a\}_x, \{\{N_{b|y}\}_b\}_y)$ such that

$$p(ab|xy) = \operatorname{Tr} \left[\rho(M_{a|x} \otimes N_{b|y} \otimes I_E) \right]$$

satisfies the constraints in C.

Through the post measurement state

$$\rho_{AQ_E} = \sum_{a} |a\rangle\!\langle a| \otimes \operatorname{Tr}_{Q_AQ_B} \left[(M_{a|x^*} \otimes I) \rho \right] \qquad \longrightarrow H(A|X = x^*, Q_E)$$

DI bounds

Want to compute

$$r(C) = \inf H(A|X = x^*, E)$$

where inf over all strategies compatible with C.

Fix some linear constraint(s) C on the joint probability distribution of the devices $p_{AB|XY}$. E.g.

$$\frac{1}{4}\sum_{xy=a\oplus b}p(ab|xy)\geq 0.8.$$

A strategy for C is a tuple $(Q_AQ_BQ_E, \rho, \{\{M_{a|x}\}_a\}_x, \{\{N_{b|y}\}_b\}_y)$ such that

$$p(ab|xy) = \operatorname{Tr} \left[\rho(M_{a|x} \otimes N_{b|y} \otimes I_E) \right]$$

satisfies the constraints in C.

Through the post measurement state

$$\rho_{AQ_E} = \sum_{a} |a\rangle\!\langle a| \otimes \operatorname{Tr}_{Q_AQ_B} \left[(M_{a|x^*} \otimes I) \rho \right] \qquad \longrightarrow H(A|X = x^*, Q_E)$$

DI bounds

Want to compute

$$r(C) = \inf H(A|X = x^*, E)$$

where inf over all strategies compatible with C.

Difficult to solve nonconvex / unbounded dimension

Approaches

- Analytical bounds [PAB+09, GMKB21, MPW21]
 - Reduce to qubits and solve explicitly
 - tight bounds / restricted scope

Approaches

- Analytical bounds [PAB+09, GMKB21, MPW21]
 - Reduce to qubits and solve explicitly
 - tight bounds / restricted scope

inf $\operatorname{Tr}\left[\rho p(Z)\right]$

- The min-entropy H_{min}
 - Write as a noncommutative polynomial optimization problem (NCPOP) and apply NPA.
 - easy to compute / poor bounds

Approaches

- Analytical bounds [PAB+09, GMKB21, MPW21]
 - Reduce to qubits and solve explicitly
 - tight bounds / restricted scope

inf $\operatorname{Tr}\left[\rho p(Z)\right]$

- The min-entropy H_{min}
 - Write as a noncommutative polynomial optimization problem (NCPOP) and apply NPA.
 - easy to compute / poor bounds
- Recent works [TSG⁺19, BFF21]
 - Different lower bounding NCPOPs.
 - Better than H_{\min} / room for improvement

Approaches

- Analytical bounds [PAB+09, GMKB21, MPW21]
 - Reduce to qubits and solve explicitly
 - tight bounds / restricted scope

- The min-entropy H_{min}
 - Write as a noncommutative polynomial optimization problem (NCPOP) and apply NPA.
 - easy to compute / poor bounds
- Recent works [TSG⁺19, BFF21]
 - Different lower bounding NCPOPs.
 - Better than H_{min} / room for improvement
- Our new approach
 - Define a sequence

$$H_m(\rho) = \inf_{Z_1, \dots, Z_m \in B(H)} \operatorname{Tr} \left[\rho \ q(Z_1, \dots, Z_m) \right] \tag{1}$$

such that $H_m \leq H$ and $H_m \to H$ as $m \to \infty$.

close to optimal / more efficient / wider scope

Approaches

- Analytical bounds [PAB+09, GMKB21, MPW21]
 - Reduce to qubits and solve explicitly
 - tight bounds / restricted scope

- The min-entropy H_{min}
 - Write as a noncommutative polynomial optimization problem (NCPOP) and apply NPA.
 - easy to compute / poor bounds
- Recent works [TSG⁺19, BFF21]
 - Different lower bounding NCPOPs.
 - Better than H_{min} / room for improvement

Numerical approaches can complement analytical ones

- Our new approach
 - Define a sequence

$$H_m(\rho) = \inf_{Z_1, \dots, Z_m \in B(H)} \operatorname{Tr} \left[\rho \ q(Z_1, \dots, Z_m) \right] \tag{1}$$

such that $H_m \leq H$ and $H_m \to H$ as $m \to \infty$.

■ close to optimal / more efficient / wider scope

Generalization: relative entropy bounds

We actually work with the relative entropy

$$D(\rho || \sigma) = \text{Tr} \left[\rho (\log \rho - \log \sigma) \right].$$

Generalization: relative entropy bounds

We actually work with the relative entropy

$$D(\rho \| \sigma) = \operatorname{Tr} \left[\rho (\log \rho - \log \sigma) \right].$$

Can use it for conditional entropy

$$H(A|B) = -D(\rho_{AB}||I_A \otimes \rho_B).$$

Generalization: relative entropy bounds

We actually work with the relative entropy

$$D(\rho \| \sigma) = \operatorname{Tr} \left[\rho (\log \rho - \log \sigma) \right].$$

Can use it for conditional entropy

$$H(A|B) = -D(\rho_{AB}||I_A \otimes \rho_B).$$

The goal

Derive something of the form

$$D(\rho \| \sigma) \leq \sum_{i=1}^{m} \inf_{Z} \operatorname{Tr} \left[\rho p_{i}(Z) \right] + \operatorname{Tr} \left[\sigma q_{i}(Z) \right]$$

with p_i and q_i some polynomials and with the RHS converging as $m \to \infty$.

Gauss-Radau approximation of the logarithm

$$\ln(x) = \int_0^1 \frac{x-1}{t(x-1)+1} dt \ge \sum_{i=1}^m w_i f_{t_i}(x)$$

where $f_t(x) = rac{x-1}{t(x-1)+1}$ (RHS converges as $m o \infty$).

Gauss-Radau approximation of the logarithm

$$\ln(x) = \int_0^1 \frac{x-1}{t(x-1)+1} dt \ge \sum_{i=1}^m w_i f_{t_i}(x)$$

where $f_t(x) = \frac{x-1}{t(x-1)+1}$ (RHS converges as $m \to \infty$).

2 Apply approximation to logarithm in $D(\rho \| \sigma)$

$$D(\rho\|\sigma) \leq \sum_{i=1}^m \frac{w_i}{\ln 2} D_{f_{t_i}}(\rho\|\sigma).$$

Gauss-Radau approximation of the logarithm

$$\ln(x) = \int_0^1 \frac{x-1}{t(x-1)+1} dt \ge \sum_{i=1}^m w_i f_{t_i}(x)$$

where $f_t(x) = \frac{x-1}{t(x-1)+1}$ (RHS converges as $m \to \infty$).

2 Apply approximation to logarithm in $D(\rho \| \sigma)$

$$D(\rho\|\sigma) \leq \sum_{i=1}^m \frac{w_i}{\ln 2} D_{f_{t_i}}(\rho\|\sigma).$$

 \blacksquare Each $D_{f_t}(\rho \| \sigma)$ admits a variational form

$$D_{f_t}(\rho\|\sigma) = \frac{1}{t}\inf_{Z\in\mathcal{B}(H)}\{\operatorname{Tr}\left[\rho(I+Z+Z^*+(1-t)Z^*Z)\right] + t\operatorname{Tr}\left[\sigma ZZ^*\right]\}$$

Gauss-Radau approximation of the logarithm

$$\ln(x) = \int_0^1 \frac{x-1}{t(x-1)+1} dt \ge \sum_{i=1}^m w_i f_{t_i}(x)$$

where $f_t(x) = \frac{x-1}{t(x-1)+1}$ (RHS converges as $m \to \infty$).

2 Apply approximation to logarithm in $D(\rho \| \sigma)$

$$D(\rho\|\sigma) \leq \sum_{i=1}^m \frac{w_i}{\ln 2} D_{f_{t_i}}(\rho\|\sigma).$$

 \blacksquare Each $D_{f_t}(\rho \| \sigma)$ admits a variational form

$$D_{f_t}(\rho\|\sigma) = \frac{1}{t}\inf_{Z\in\mathcal{B}(H)} \{\operatorname{Tr}\left[\rho(I+Z+Z^*+(1-t)Z^*Z)\right] + t\operatorname{Tr}\left[\sigma ZZ^*\right]\}$$

Result

$$D(\rho \| \sigma) \leq \sum_{i=1}^{m} \frac{w_i}{t_i \ln 2} \inf_{Z \in \mathcal{B}(\mathcal{H})} \{ \text{Tr} \left[\rho (I + Z + Z^* + (1 - t_i)Z^*Z) \right] + t_i \text{Tr} \left[\sigma Z Z^* \right] \}$$

and RHS converges as $m \to \infty$.

$$H(A|B) = -D(\rho_{AB}||I_A \otimes \rho_B)$$

Theorem

The rate inf $H(A|X = x^*, Q_E)$ is never smaller than

$$c_m + \inf_{\text{strategies}} \sum_{i=1}^{m-1} \frac{w_i}{t_i \ln 2} \sum_{a} \operatorname{Tr} \left[\rho_{Q_A Q_E} (M_{a|x^*} \otimes (Z_{a,i} + Z_{a,i}^* + (1-t_i)Z_{a,i}^* Z_{a,i}) + t_i Z_{a,i} Z_{a,i}^*) \right].$$

$$H(A|B) = -D(\rho_{AB}||I_A \otimes \rho_B)$$

Theorem

The rate inf $H(A|X = x^*, Q_E)$ is never smaller than

$$c_m + \inf_{\text{strategies}} \sum_{i=1}^{m-1} \frac{w_i}{t_i \ln 2} \sum_{a} \operatorname{Tr} \left[\rho_{Q_A Q_E} (M_{a|x^*} \otimes (Z_{a,i} + Z_{a,i}^* + (1-t_i)Z_{a,i}^* Z_{a,i}) + t_i Z_{a,i} Z_{a,i}^*) \right].$$

Remarks

Can now be easily relaxed to an NCPOP and solved using NPA [PNA10].

$$H(A|B) = -D(\rho_{AB}||I_A \otimes \rho_B)$$

− Drop \otimes and impose [M, Z] = 0.

Theorem

The rate inf $H(A|X = x^*, Q_E)$ is never smaller than

$$c_{m} + \inf_{\text{strategies}} \sum_{i=1}^{m-1} \frac{w_{i}}{t_{i} \ln 2} \sum_{a} \operatorname{Tr} \left[\rho_{Q_{A}Q_{E}} (M_{a|x^{*}} \otimes (Z_{a,i} + Z_{a,i}^{*} + (1 - t_{i})Z_{a,i}^{*}Z_{a,i}) + t_{i}Z_{a,i}Z_{a,i}^{*}) \right].$$

Remarks

Can now be easily relaxed to an NCPOP and solved using NPA [PNA10].

$$H(A|B) = -D(\rho_{AB}||I_A \otimes \rho_B)$$

Drop \otimes and impose [M, Z] = 0.

Theorem

The rate inf $H(A|X = x^*, Q_E)$ is never smaller than

$$c_m + \inf_{\text{strategies}} \sum_{i=1}^{m-1} \frac{w_i}{t_i \ln 2} \sum_{a} \operatorname{Tr} \left[\rho_{Q_A Q_E} (M_{a|x^*} \otimes (Z_{a,i} + Z_{a,i}^* + (1 - t_i) Z_{a,i}^* Z_{a,i}) + t_i Z_{a,i} Z_{a,i}^*) \right].$$

Remarks

- Can now be easily relaxed to an NCPOP and solved using NPA [PNA10].
- NPA hierarchy converges as ||Z|| can be bounded.

$$H(A|B) = -D(\rho_{AB}||I_A \otimes \rho_B)$$

- Drop \otimes and impose [M, Z] = 0.

Theorem

The rate inf $H(A|X = x^*, Q_E)$ is never smaller than

$$c_m + \inf_{\text{strategies}} \sum_{i=1}^{m-1} \frac{w_i}{t_i \ln 2} \sum_{a} \operatorname{Tr} \left[\rho_{Q_A Q_E} (M_{a|x^*} \otimes (Z_{a,i} + Z_{a,i}^* + (1 - t_i) Z_{a,i}^* Z_{a,i}) + t_i Z_{a,i} Z_{a,i}^*) \right].$$

Remarks

- Can now be easily relaxed to an NCPOP and solved using NPA [PNA10].
- NPA hierarchy converges as ||Z|| can be bounded.
- Similar results for $H(AB|X = x, Y = y, Q_E)$ or $H(A|XQ_E)$ and others.

$$H(A|B) = -D(\rho_{AB}||I_A \otimes \rho_B)$$

- Drop \otimes and impose [M, Z] = 0.

Theorem

The rate inf $H(A|X = x^*, Q_E)$ is never smaller than

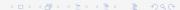
$$c_{m} + \inf_{\text{strategies}} \sum_{i=1}^{m-1} \frac{w_{i}}{t_{i} \ln 2} \sum_{a} \operatorname{Tr} \left[\rho_{Q_{A}Q_{E}} (M_{a|x^{*}} \otimes (Z_{a,i} + Z_{a,i}^{*} + (1 - t_{i})Z_{a,i}^{*}Z_{a,i}) + t_{i}Z_{a,i}Z_{a,i}^{*}) \right].$$

Remarks

- Can now be easily relaxed to an NCPOP and solved using NPA [PNA10].
- NPA hierarchy converges as ||Z|| can be bounded.
- Similar results for $H(AB|X = x, Y = y, Q_E)$ or $H(A|XQ_E)$ and others.

Caveats

■ Number of operators grows with *m*.



$$H(A|B) = -D(\rho_{AB}||I_A \otimes \rho_B)$$

- Drop \otimes and impose [M, Z] = 0.

Theorem

The rate inf $H(A|X = x^*, Q_E)$ is never smaller than

$$c_m + \inf_{\text{strategies}} \sum_{i=1}^{m-1} \frac{w_i}{t_i \ln 2} \sum_{a} \operatorname{Tr} \left[\rho_{Q_A Q_E} (M_{a|x^*} \otimes (Z_{a,i} + Z_{a,i}^* + (1 - t_i) Z_{a,i}^* Z_{a,i}) + t_i Z_{a,i} Z_{a,i}^*) \right].$$

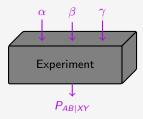
Remarks

- Can now be easily relaxed to an NCPOP and solved using NPA [PNA10].
- NPA hierarchy converges as ||Z|| can be bounded.
- Similar results for $H(AB|X = x, Y = y, Q_E)$ or $H(A|XQ_E)$ and others.

Caveats

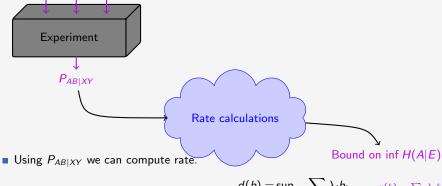
■ Number of operators grows with m. Use $\inf \sum_{i} \cdots \ge \sum_{i} \inf \ldots$ to stop such scaling

Optimizing experiments



■ Distribution depends on parameters – $P_{\alpha,\beta,\gamma}(a,b|x,y)$

Optimizing experiments



$$p(b) = \inf_{X} \quad \text{Tr} [CX]$$

$$\text{s.t.} \quad \text{Tr} [F_{i}X] = b_{i} \quad \forall i$$

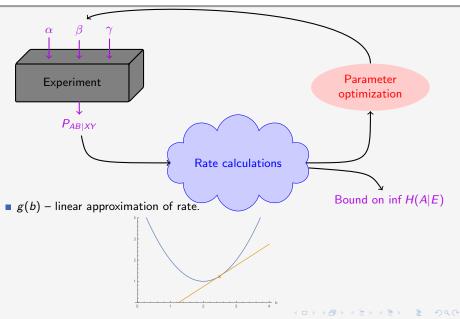
$$X \ge 0$$

$$d(b) = \sup_{\lambda, Y} \quad \sum_{i} \lambda_{i}b_{i} \quad g(b) = \sum_{i} \lambda_{i}b_{i}$$

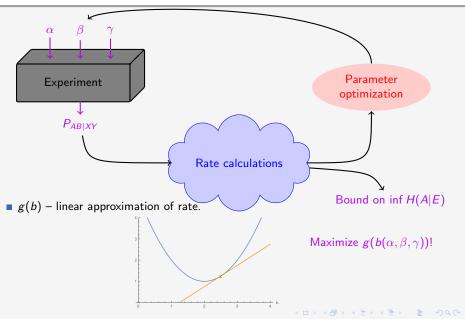
$$\text{s.t.} \quad C - \sum_{i} \lambda_{i}F_{i} - Y \ge 0$$

$$Y \ge 0$$

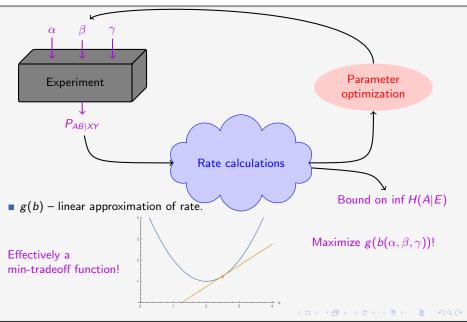
Optimizing experiments



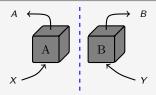
Optimizing experiments



Optimizing experiments

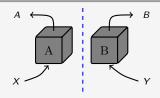


Applied our method to compute rates for DIRNG and DIQKD.



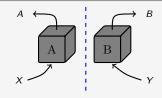
- Applied our method to compute rates for DIRNG and DIQKD.
- Experimental parameters: $(\theta, a_0, a_1, \dots, b_0, b_1, \dots)$ where

$$\begin{split} |\psi\rangle_{Q_AQ_B} &= \cos(\theta)\,|00\rangle + \sin(\theta)\,|11\rangle \\ M_{0|x} &= \frac{1}{2}(I + \cos(a_x)\sigma_z + \sin(a_x)\sigma_x) \\ N_{0|y} &= \frac{1}{2}(I + \cos(b_y)\sigma_z + \sin(b_y)\sigma_x) \end{split}$$



- Applied our method to compute rates for DIRNG and DIQKD.
- Experimental parameters: $(\theta, a_0, a_1, \dots, b_0, b_1, \dots)$ where

$$\begin{split} |\psi\rangle_{Q_AQ_B} &= \cos(\theta)\,|00\rangle + \sin(\theta)\,|11\rangle \\ M_{0|x} &= \frac{1}{2}(I + \cos(a_x)\sigma_z + \sin(a_x)\sigma_x) \\ N_{0|y} &= \frac{1}{2}(I + \cos(b_y)\sigma_z + \sin(b_y)\sigma_x) \end{split}$$



- Looked at different constraint sets C:
 - CHSH score

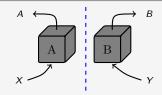
$$\frac{1}{4} \sum_{xy=a \oplus b} p(ab|xy) \ge \omega$$

Full distribution

$$p(ab|xy) = c_{abxy}$$
 $\forall (a, b, x, y)$

- Applied our method to compute rates for DIRNG and DIQKD.
- **E**xperimental parameters: $(\theta, a_0, a_1, \dots, b_0, b_1, \dots)$ where

$$|\psi\rangle_{Q_AQ_B} = \cos(\theta) |00\rangle + \sin(\theta) |11\rangle$$
 $M_{0|x} = \frac{1}{2}(I + \cos(a_x)\sigma_z + \sin(a_x)\sigma_x)$
 $N_{0|y} = \frac{1}{2}(I + \cos(b_y)\sigma_z + \sin(b_y)\sigma_x)$



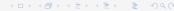
- Looked at different constraint sets C:
 - CHSH score

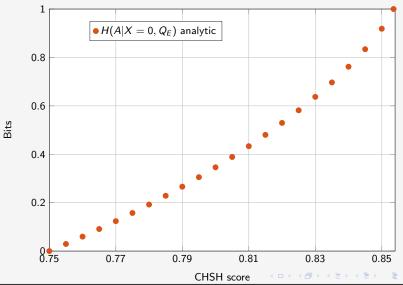
$$\frac{1}{4} \sum_{xy=a \oplus b} p(ab|xy) \ge \omega$$

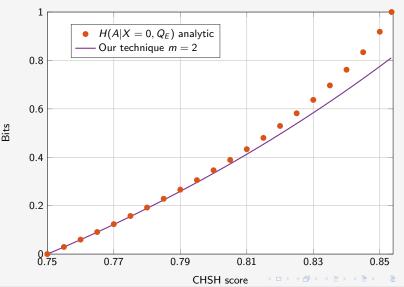
Full distribution

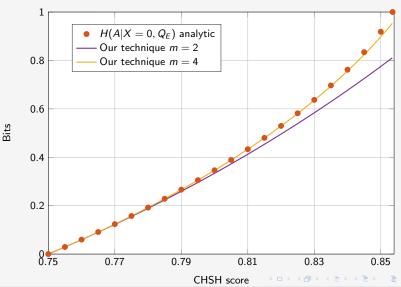
$$p(ab|xy) = c_{abxy}$$
 $\forall (a, b, x, y)$

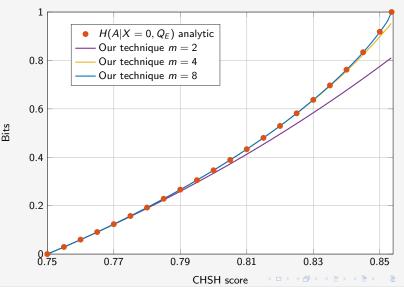
- Investigated detection efficiency noise model.
 - Independent probability $\eta \in [0,1]$ that each device *succeeds*.
 - Device failures recorded as a particular outcome.

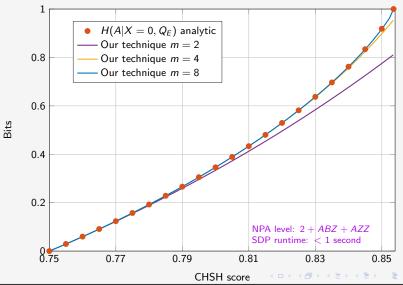






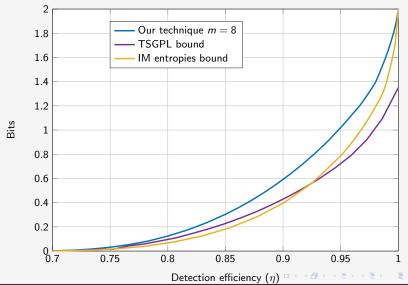






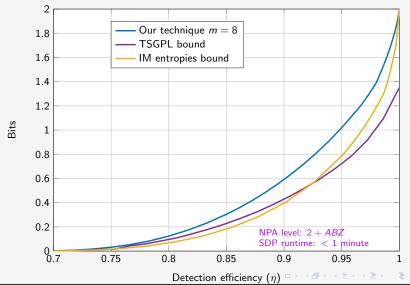
Results II – Improved randomness expansion rates

Bounding inf $H(AB|X = 0, Y = 0, Q_E)$



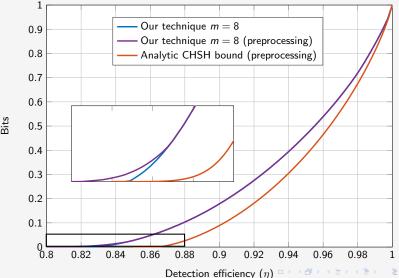
Results II – Improved randomness expansion rates

Bounding inf $H(AB|X = 0, Y = 0, Q_E)$



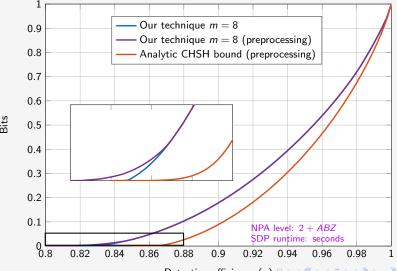
Results III - Improved DIQKD rates

Bounding inf $H(A|X=0, Q_E) - H(A|X=0, Y=2, B)$



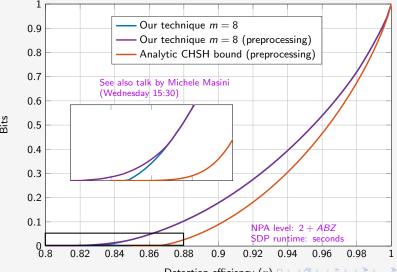
Results III – Improved DIQKD rates

Bounding inf
$$H(A|X = 0, Q_E) - H(A|X = 0, Y = 2, B)$$



Results III – Improved DIQKD rates

Bounding inf $H(A|X=0, Q_E) - H(A|X=0, Y=2, B)$



Summary

■ New general method to compute rates of DI protocols.

Summary

- New general method to compute rates of DI protocols.
- Convergent (in a sense) observe practical convergence also.

Summary

- New general method to compute rates of DI protocols.
- Convergent (in a sense) observe practical convergence also.
- Outperforms all previous methods (+ faster)

Summary

- New general method to compute rates of DI protocols.
- Convergent (in a sense) observe practical convergence also.
- Outperforms all previous methods (+ faster)
- Applies to infinite dimensional systems and can be used directly with EAT to prove security.

Summary

- New general method to compute rates of DI protocols.
- Convergent (in a sense) observe practical convergence also.
- Outperforms all previous methods (+ faster)
- Applies to infinite dimensional systems and can be used directly with EAT to prove security.

Outlook

■ Better understand convergence? (commuting operator vs tensor product).

Summary

- New general method to compute rates of DI protocols.
- Convergent (in a sense) observe practical convergence also.
- Outperforms all previous methods (+ faster)
- Applies to infinite dimensional systems and can be used directly with EAT to prove security.

Outlook

- Better understand convergence? (commuting operator vs tensor product).
- Is DIQKD feasible now? (Better experimental model / finite size analysis)

Summary

- New general method to compute rates of DI protocols.
- Convergent (in a sense) observe practical convergence also.
- Outperforms all previous methods (+ faster)
- Applies to infinite dimensional systems and can be used directly with EAT to prove security.

Outlook

- Better understand convergence? (commuting operator vs tensor product).
- Is DIQKD feasible now? (Better experimental model / finite size analysis)
- Beyond DIQKD?

Bibliography

Peter Brown, Hamza Fawzi, and Omar Fawzi. Nature communications, 12(1):1-12, 2021.

Computing conditional entropies for quantum correlations.

Federico Grasselli, Gláucia Murta, Hermann Kampermann, and Dagmar Bruß.

In preparation.

Timo Holz, Hermann Kampermann, and Dagmar Bruß.

Genuine multipartite bell inequality for device-independent conference key agreement.

Physical Review Research, 2(2):023251, 2020.

Michele Masini, Stefano Pironio, and Erik Woodhead.

Simple and practical digkd security analysis via bb84-type uncertainty relations and pauli correlation constraints. arXiv preprint arXiv:2107.08894, 2021.

Stefano Pironio, Antonio Acín, Nicolas Brunner, Nicolas Gisin, Serge Massar, and Valerio Scarani,

Device-independent quantum key distribution secure against collective attacks.

New Journal of Physics, 11(4):045021, 2009.

Stefano Pironio, Miguel Navascués, and Antonio Acín.

Convergent relaxations of polynomial optimization problems with noncommuting variables. SIAM Journal on Optimization, 20(5):2157-2180, 2010.

Ernest Y-Z Tan, René Schwonnek, Koon Tong Goh, Ignatius William Primaatmaja, and Charles C-W Lim.

Computing secure key rates for quantum key distribution with untrusted devices. e-print arXiv:1908.11372, 2019.

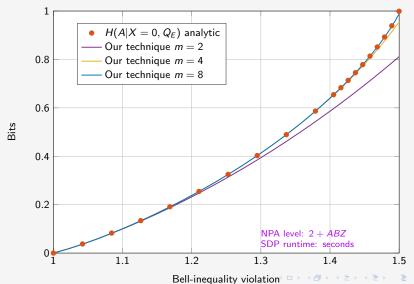
Erik Woodhead, Antonio Acín, and Stefano Pironio.

Device-independent quantum key distribution with asymmetric chsh inequalities. Quantum, 5:443, 2021.

Bonus results - DICKA setting (Holz inequality [HKB20])



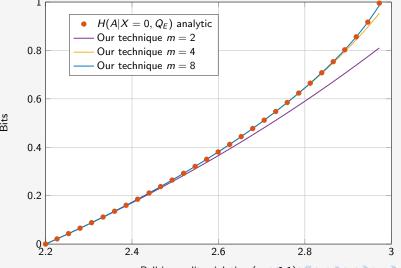
Bonus results - DICKA setting (Holz inequality [HKB20])



Bonus results – Generalized CHSH [WAP21] ($\alpha = 1.1$)

Bounding inf
$$H(A|X=0,Q_E)$$

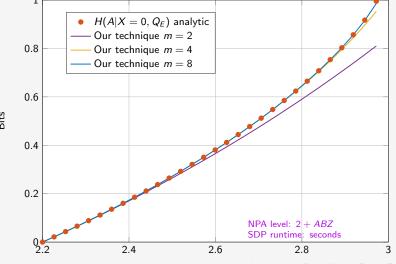
$$B_{\alpha} = \alpha(\langle A_0B_0\rangle + \langle A_0B_1\rangle) + \langle A_1B_0\rangle - \langle A_1B_1\rangle$$



Bonus results – Generalized CHSH [WAP21] ($\alpha = 1.1$)

Bounding inf
$$H(A|X=0,Q_E)$$

$$B_{\alpha} = \alpha(\langle A_0B_0\rangle + \langle A_0B_1\rangle) + \langle A_1B_0\rangle - \langle A_1B_1\rangle$$



Bonus results – Generalized CHSH [WAP21] ($\alpha = 0.9$)

Bounding inf
$$H(A|X=0,Q_E)$$

$$B_{\alpha} = \alpha(\langle A_0B_0\rangle + \langle A_0B_1\rangle) + \langle A_1B_0\rangle - \langle A_1B_1\rangle$$

