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Bell-nonlocality
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Nonlocal correlations are the foundation for many device independent
protocols

There are measurements that do not destroy the entanglement between the
two halves of the state.

Can we use this remaining entanglement to generate more nonlocal
correlations?
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The scenario

We focus on the following scenario introduced in [SGGP15].
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x,y ,a,b(−1)xy+a+bpABk (a, b|x , y)

All inputs/outputs are binary - inputs chosen uniformly.
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Main question

Suppose Alice and Bob1 share the state ρAB1 . Then what is the
maximum number of Bob’s that can achieve an expected CHSH
violation with Alice?
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The scenario II
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Previous works:

Investigated ρAB1 = |Φ+〉〈Φ+|
[SGGP15]: heavily biased inputs
=⇒ unbounded #-violations.

[SGGP15]: Numerical evidence suggests
that without biasing at most two Bobs.

[MMH16]: Gave proof (restricted class of measurements).

Here we show the statement is false

Construct for any n ∈ N an explicit n-Bob measurement strategy.

Extend strategy to a larger class of two-qubit states
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The strategy

We consider qubit POVMs {M, I −M} with

M = I/2 + γ(cos(ϕ)σz + sin(ϕ)σx)/2,

where ϕ ∈ [−π, π] and γ ∈ [0, 1] is the sharpness.
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A0|0A0|1

θ

Alice’s measurements: For θ ∈ (0, π/4]

A0|0 =
I + cos(θ)σz + sin(θ)σx

2

and

A0|1 =
I + cos(θ)σz − sin(θ)σx

2
.
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where ϕ ∈ [−π, π] and γ ∈ [0, 1] is the sharpness.
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B0|0

B1|0

Alice’s measurements: For θ ∈ (0, π/4]

A0|0 =
I + cos(θ)σz + sin(θ)σx

2

and

A0|1 =
I + cos(θ)σz − sin(θ)σx

2
.

Bobk ’s measurements: For γk ∈ (0, 1)

Bk
0|0 =

I + σz

2

and

Bk
0|1 =

I + γkσx

2
.
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The strategy II

If Alice and Bob1 start with the state |ψ〉 = 1√
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(|00〉+ |11〉) then
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Theorem
For any n ∈ N there exists θ ∈ (0, π/4] and (γ1, . . . , γn) ∈ (0, 1)n such that
CHSHABk > 2 for all 1 ≤ k ≤ n.

Sketch:

CHSHABk > 2 ⇐⇒ γk >
2k−1 − cos(θ)

∏k−1
j=1 (1 +

√
1− γ2

j )

sin(θ)

So for ε > 0 set

γk :=

(1 + ε)
2k−1−cos(θ)

∏k−1
j=1 (1+

√
1−γ2

j )

sin(θ)
if 0 ≤ γk−1 ≤ 1

∞ otherwise

Show you can always choose θ small enough such that 0 < γ1 < · · · < γn < 1.
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Extension to general two-qubit states

For a general two-qubit state ρAB1 we give a strategy achieving

CHSHABk = 22−k

(
γks2 sin(θ) + s1 cos(θ)

k−1∏
j=1

(
1 +

√
1− γ2

j

))
.

Singular values of
(T )ij = Tr

[
ρ(σi ⊗ σj )

]

No bound on #-violations when s1 = 1!

Includes all pure entangled two-qubit states.
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Sequential violations don’t scale so well

Smaller θ allows more Bobs to violate.

Evidence suggests θn ≈ 2−2n

Pretty bad for the CHSH violations. . .

CHSHABn < 2 + 22−nθ.
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Shown unbounded violations for scenario introduced in [SGGP15].

QID2020(+1) | Phys. Rev. Lett. 125, 090401 (2020) or arXiv:2003.12105 | Feb 22 2021 9 / 10



Arbitrarily many independent observers can share the nonlocality of a single maximally entangled qubit pair

Summary/Further work

Shown unbounded violations for scenario introduced in [SGGP15].

Strategy can also be extended to larger class of states including all two-qubit pure
states.

QID2020(+1) | Phys. Rev. Lett. 125, 090401 (2020) or arXiv:2003.12105 | Feb 22 2021 9 / 10



Arbitrarily many independent observers can share the nonlocality of a single maximally entangled qubit pair

Summary/Further work

Shown unbounded violations for scenario introduced in [SGGP15].

Strategy can also be extended to larger class of states including all two-qubit pure
states.

Many works have investigated limitations in the sequential scenario and found
strong limitations:

Steering: [SHDH+19, SDMM18]
Entanglement witnessing: [BMSS18]
Other Bell-inequalities: [KP19, DGS+19]
Tripartite settings: [SDS+19, MDG+20]

However the analyses use a restricted class of measurements as in [MMH16]. Worth
rethinking some of the results within a more general measurement scheme.
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rethinking some of the results within a more general measurement scheme.

Can we translate sequential schemes into a practical advantage?
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Summary/Further work

Shown unbounded violations for scenario introduced in [SGGP15].

Strategy can also be extended to larger class of states including all two-qubit pure
states.

Many works have investigated limitations in the sequential scenario and found
strong limitations:

Steering: [SHDH+19, SDMM18]
Entanglement witnessing: [BMSS18]
Other Bell-inequalities: [KP19, DGS+19]
Tripartite settings: [SDS+19, MDG+20]

However the analyses use a restricted class of measurements as in [MMH16]. Worth
rethinking some of the results within a more general measurement scheme.

Can we translate sequential schemes into a practical advantage?

Scenario where we also have a sequence of Alices?
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