Peter Brown, Hamza Fawzi and Omar Fawzi

arXiv:2106.13692

Oct 01 2021

Bell-nonlocality

æ.

・ロト ・聞ト ・ヨト ・ヨト

Bell-nonlocality

Nonlocal correlations are inherently random.

æ

Bell-nonlocality

- Nonlocal correlations are inherently random.
- Foundation for randomness expansion / key-distribution protocols!

Bell-nonlocality

- Nonlocal correlations are inherently random.
- Foundation for randomness expansion / key-distribution protocols!
- Security and analysis relies on the *rate* (bits per round).

< ロ > < 同 > < 回 > < 回 > < 回 > <

Bell-nonlocality

- Nonlocal correlations are inherently random.
- Foundation for randomness expansion / key-distribution protocols!
- Security and analysis relies on the *rate* (bits per round).

— Main task of this work

< ロ > < 同 > < 回 > < 回 > < 回 > <

Randomness generated per round

・ロト ・四ト ・ヨト ・ヨト

Randomness generated per round

Asymptotic rates are given by:

Randomness expansion

$$H(AB|X = x^*, Y = y^*, E)$$

QKD

$$H(A|X = x^*, E) - H(A|X = x^*, Y = y^*, B)$$

(日)

Randomness generated per round

Fix some linear constraint(s) C on the joint probability distribution of the devices $p_{AB|XY}$. E.g.

$$\frac{1}{4}\sum_{xy=a\oplus b}p(ab|xy)\geq 0.8.$$

・ロト ・聞ト ・ヨト ・ヨト

Fix some linear constraint(s) C on the joint probability distribution of the devices $p_{AB|XY}$. E.g.

$$\frac{1}{4}\sum_{xy=a\oplus b}p(ab|xy)\geq 0.8.$$

A strategy for C is a tuple $(Q_A Q_B Q_E, \rho, \{\{M_{a|x}\}_a\}_x, \{\{N_{b|y}\}_b\}_y)$ such that

$$p(ab|xy) = \operatorname{Tr} \left[\rho(M_{a|x} \otimes N_{b|y} \otimes I_E) \right]$$

satisfies the constraints in C.

・ロト ・ 同ト ・ ヨト ・ ヨト

Fix some linear constraint(s) C on the joint probability distribution of the devices $p_{AB|XY}$. E.g.

$$\frac{1}{4}\sum_{xy=a\oplus b}p(ab|xy)\geq 0.8.$$

A strategy for C is a tuple $(Q_A Q_B Q_E, \rho, \{\{M_{a|x}\}_a\}_x, \{\{N_{b|y}\}_b\}_y)$ such that

$$p(ab|xy) = \operatorname{Tr} \left[\rho(M_{a|x} \otimes N_{b|y} \otimes I_E) \right]$$

satisfies the constraints in C.

Through the post measurement state

$$\rho_{AQ_E} = \sum_{a} |a\rangle \langle a| \otimes \operatorname{Tr}_{Q_A Q_B} \left[(M_{a|x^*} \otimes I) \rho \right] \longrightarrow H(A|X = x^*, Q_E)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Fix some linear constraint(s) C on the joint probability distribution of the devices $p_{AB|XY}$. E.g.

$$\frac{1}{4}\sum_{xy=a\oplus b}p(ab|xy)\geq 0.8.$$

A strategy for C is a tuple $(Q_A Q_B Q_E, \rho, \{\{M_{a|x}\}_a\}_x, \{\{N_{b|y}\}_b\}_y)$ such that

$$p(ab|xy) = \operatorname{Tr} \left[\rho(M_{a|x} \otimes N_{b|y} \otimes I_E) \right]$$

satisfies the constraints in C.

Through the post measurement state

$$\rho_{AQ_E} = \sum_{a} |a\rangle \langle a| \otimes \operatorname{Tr}_{Q_A Q_B} \left[(M_{a|x^*} \otimes I) \rho \right] \longrightarrow H(A|X = x^*, Q_E)$$

DI bounds

Want to compute

$$r(C) = \inf H(A|X = x^*, E)$$

where inf over all strategies compatible with C.

イロト 不得 トイヨト イヨト

Fix some linear constraint(s) C on the joint probability distribution of the devices $p_{AB|XY}$. E.g.

$$\frac{1}{4}\sum_{xy=a\oplus b}p(ab|xy)\geq 0.8.$$

A strategy for C is a tuple $(Q_A Q_B Q_E, \rho, \{\{M_{a|x}\}_a\}_x, \{\{N_{b|y}\}_b\}_y)$ such that

$$p(ab|xy) = \operatorname{Tr} \left[\rho(M_{a|x} \otimes N_{b|y} \otimes I_E) \right]$$

satisfies the constraints in C.

Through the post measurement state

$$\rho_{AQ_E} = \sum_{a} |a\rangle \langle a| \otimes \operatorname{Tr}_{Q_AQ_B} \left[(M_{a|x^*} \otimes I)\rho \right] \longrightarrow H(A|X = x^*, Q_E)$$

DI bounds

Want to compute

$$r(C) = \inf H(A|X = x^*, E)$$

where inf over all strategies compatible with C.

Difficult to solve nonconvex / unbounded dimension

Approaches

- Analytical bounds [PAB⁺09, GMKB21, MPW21]
 - Reduce to qubits and solve explicitly
 - tight bounds / restricted scope

э

メロト メポト メヨト メヨト

Approaches

- Analytical bounds [PAB⁺09, GMKB21, MPW21]
 - Reduce to qubits and solve explicitly
 - tight bounds / restricted scope

 $\begin{array}{ll} \inf & \operatorname{Tr}\left[\rho p(Z)\right] \\ \mathrm{s.t.} & q_i(Z) \ge 0 \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\$

- The min-entropy *H*_{min}
 - Write as a noncommutative polynomial optimization problem (NCPOP) and apply NPA.
 - easy to compute / poor bounds

Approaches

- Analytical bounds [PAB⁺09, GMKB21, MPW21]
 - Reduce to qubits and solve explicitly
 - tight bounds / restricted scope
- The min-entropy *H*_{min}
 - Write as a noncommutative polynomial optimization problem (NCPOP) and apply NPA.
 - easy to compute / poor bounds
- Recent works [TSG⁺19, BFF21]
 - Different lower bounding NCPOPs.
 - Better than H_{\min} / room for improvement

Approaches

- Analytical bounds [PAB⁺09, GMKB21, MPW21]
 - Reduce to qubits and solve explicitly
 - tight bounds / restricted scope
- The min-entropy *H*_{min}
 - Write as a noncommutative polynomial optimization problem (NCPOP) and apply NPA.
 - easy to compute / poor bounds
- Recent works [TSG⁺19, BFF21]
 - Different lower bounding NCPOPs.
 - Better than H_{min} / room for improvement
- Our new approach
 - Define a sequence

$$H_m(\rho) = \inf_{Z_1, \dots, Z_m \in B(H)} \operatorname{Tr} \left[\rho \ q(Z_1, \dots, Z_m) \right]$$
(1)

such that $H_m \leq H$ and $H_m \rightarrow H$ as $m \rightarrow \infty$. • close to optimal / more efficient / wider scope

inf $\operatorname{Tr}\left[\rho p(Z)\right]$

Generalization: relative entropy bounds

We actually work with the relative entropy

$$D(\rho \| \sigma) = \operatorname{Tr} \left[\rho(\log \rho - \log \sigma) \right].$$

イロト 不得 トイヨト イヨト

Generalization: relative entropy bounds

We actually work with the relative entropy

$$D(\rho \| \sigma) = \operatorname{Tr} \left[\rho(\log \rho - \log \sigma) \right].$$

Can use it for conditional entropy

$$H(A|B) = -D(\rho_{AB}||I_A \otimes \rho_B).$$

< ロ > < 同 > < 回 > < 回 > .

Generalization: relative entropy bounds

We actually work with the relative entropy

$$D(\rho \| \sigma) = \operatorname{Tr} \left[\rho(\log \rho - \log \sigma) \right].$$

Can use it for conditional entropy

$$H(A|B) = -D(\rho_{AB}||I_A \otimes \rho_B).$$

The goal

Derive something of the form

$$D(
ho\|\sigma) \leq \sum_{i=1}^{m} \sup_{Z} \operatorname{Tr} \left[
ho p_i(Z)\right] + \operatorname{Tr} \left[\sigma q_i(Z)\right]$$

with p_i and q_i some polynomials and with the RHS converging as $m \to \infty$.

Generalization: relative entropy bounds

We actually work with the relative entropy

$$D(\rho \| \sigma) = \operatorname{Tr} \left[\rho(\log \rho - \log \sigma) \right].$$

Can use it for conditional entropy

$$H(A|B) = -D(\rho_{AB}||I_A \otimes \rho_B).$$

The goal

Know
$$D(\rho \| \sigma) = \sup_{(X, Y, z) \in \mathcal{F}} \operatorname{Tr} [\rho X] + \operatorname{Tr} [\sigma Y] + z$$

Derive something of the form

$$D(
ho\|\sigma) \leq \sum_{i=1}^m \sup_Z \operatorname{Tr} \left[
ho p_i(Z)
ight] + \operatorname{Tr} \left[\sigma q_i(Z)
ight]$$

with p_i and q_i some polynomials and with the RHS converging as $m \to \infty$.

Generalization: relative entropy bounds

We actually work with the relative entropy

$$D(\rho \| \sigma) = \operatorname{Tr} \left[\rho(\log \rho - \log \sigma) \right].$$

Can use it for conditional entropy

$$H(A|B) = -D(\rho_{AB}||I_A \otimes \rho_B).$$

The goal

Know
$$D(\rho \| \sigma) = \sup_{(X, Y, z) \in \mathcal{F}} \operatorname{Tr} [\rho X] + \operatorname{Tr} [\sigma Y] + z$$

Derive something of the form

$$D(
ho\|\sigma) \leq \sum_{i=1}^m \sup_Z \operatorname{Tr} \left[
ho p_i(Z)
ight] + \operatorname{Tr} \left[\sigma q_i(Z)
ight]$$

with p_i and q_i some polynomials and with the RHS converging as $m \to \infty$.

Form sufficient for later NPA relaxations

1 Gauss-Radau approximation of the logarithm

$$\ln(x) = \int_0^1 \frac{x-1}{t(x-1)+1} dt \ge \sum_{i=1}^m w_i f_{t_i}(x)$$

where $f_t(x) = \frac{x-1}{t(x-1)+1}$ (RHS converges as $m \to \infty$).

★白 ▶ ★ 圖 ▶ ★ 国 ▶ ★ 国 ▶ → 国

1 Gauss-Radau approximation of the logarithm

$$\ln(x) = \int_0^1 \frac{x-1}{t(x-1)+1} \mathrm{d}t \ge \sum_{i=1}^m w_i f_{t_i}(x)$$

where $f_t(x) = rac{x-1}{t(x-1)+1}$ (RHS converges as $m \to \infty$).

2 Apply approximation to logarithm in $D(\rho \| \sigma)$

$$D(
ho\|\sigma) \leq -\sum_{i=1}^m rac{w_i}{\ln 2} D_{f_{t_i}}(
ho\|\sigma).$$

1 Gauss-Radau approximation of the logarithm

$$\ln(x) = \int_0^1 \frac{x-1}{t(x-1)+1} \mathrm{d}t \ge \sum_{i=1}^m w_i f_{t_i}(x)$$

where $f_t(x) = rac{x-1}{t(x-1)+1}$ (RHS converges as $m \to \infty$).

2 Apply approximation to logarithm in $D(\rho \| \sigma)$

$$D(
ho\|\sigma) \leq -\sum_{i=1}^m rac{w_i}{\ln 2} D_{f_{t_i}}(
ho\|\sigma).$$

3 Each $D_{f_t}(\rho \| \sigma)$ admits a variational form

$$D_{f_t}(\rho \| \sigma) = \frac{1}{t} \inf_{Z \in B(H)} \{ \operatorname{Tr} \left[\rho(I + Z + Z^* + (1 - t)Z^*Z) \right] + t \operatorname{Tr} \left[\sigma Z Z^* \right] \}$$

★白 ▶ ★ 圖 ▶ ★ 国 ▶ ★ 国 ▶ → 国

1 Gauss-Radau approximation of the logarithm

$$\ln(x) = \int_0^1 \frac{x-1}{t(x-1)+1} \mathrm{d}t \ge \sum_{i=1}^m w_i f_{t_i}(x)$$

where $f_t(x) = rac{x-1}{t(x-1)+1}$ (RHS converges as $m \to \infty$).

2 Apply approximation to logarithm in $D(\rho \| \sigma)$

$$D(
ho\|\sigma) \leq -\sum_{i=1}^m rac{w_i}{\ln 2} D_{f_{t_i}}(
ho\|\sigma).$$

3 Each $D_{f_t}(\rho \| \sigma)$ admits a variational form

$$D_{f_t}(\rho \| \sigma) = \frac{1}{t} \inf_{Z \in \mathcal{B}(\mathcal{H})} \{ \operatorname{Tr} \left[\rho(I + Z + Z^* + (1 - t)Z^*Z) \right] + t \operatorname{Tr} \left[\sigma Z Z^* \right] \}$$

Result

$$D(\rho \| \sigma) \le -\sum_{i=1}^{m} \frac{w_i}{t_i \ln 2} \inf_{Z \in B(H)} \{ \operatorname{Tr} \left[\rho (I + Z + Z^* + (1 - t_i)Z^*Z) \right] + t_i \operatorname{Tr} \left[\sigma Z Z^* \right] \}$$

and RHS converges as $m \to \infty$.

 $H(A|B) = -D(\rho_{AB} || I_A \otimes \rho_B)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem

The rate inf $H(A|X = x^*, Q_E)$ is never smaller than

$$c_{m} + \inf_{\text{strategies}} \sum_{i=1}^{m-1} \frac{w_{i}}{t_{i} \ln 2} \sum_{a} \operatorname{Tr} \left[\rho_{Q_{A}Q_{E}}(M_{a|x^{*}} \otimes (Z_{a,i} + Z_{a,i}^{*} + (1 - t_{i})Z_{a,i}^{*}Z_{a,i}) + t_{i}Z_{a,i}Z_{a,i}^{*}) \right]$$

 $H(A|B) = -D(\rho_{AB} || I_A \otimes \rho_B)$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem

The rate inf $H(A|X = x^*, Q_E)$ is never smaller than

$$c_{m} + \inf_{\text{strategies}} \sum_{i=1}^{m-1} \frac{w_{i}}{t_{i} \ln 2} \sum_{a} \operatorname{Tr} \left[\rho_{Q_{A}Q_{E}}(M_{a|x^{*}} \otimes (Z_{a,i} + Z_{a,i}^{*} + (1 - t_{i})Z_{a,i}^{*}Z_{a,i}) + t_{i}Z_{a,i}Z_{a,i}^{*}) \right]$$

Remarks

Can now be easily relaxed to an NCPOP and solved using NPA [PNA10].

 $H(A|B) = -D(\rho_{AB} || I_A \otimes \rho_B)$

・ロット (雪) (日) (日)

Theorem

The rate inf $H(A|X = x^*, Q_E)$ is never smaller than

$$c_{m} + \inf_{\text{strategies}} \sum_{i=1}^{m-1} \frac{w_{i}}{t_{i} \ln 2} \sum_{a} \operatorname{Tr} \left[\rho_{Q_{A}Q_{E}}(M_{a|x^{*}} \otimes (Z_{a,i} + Z_{a,i}^{*} + (1 - t_{i})Z_{a,i}^{*}Z_{a,i}) + t_{i}Z_{a,i}Z_{a,i}^{*}) \right]$$
Promarks

<u>Remarks</u>

Can now be easily relaxed to an NCPOP and solved using NPA [PNA10].

 $H(A|B) = -D(\rho_{AB} || I_A \otimes \rho_B)$

< ロ > < 同 > < 回 > < 回 > < □ > <

Theorem

The rate inf $H(A|X = x^*, Q_E)$ is never smaller than

$$c_{m} + \inf_{\text{strategies}} \sum_{i=1}^{m-1} \frac{w_{i}}{t_{i} \ln 2} \sum_{a} \operatorname{Tr} \left[\rho_{Q_{A}Q_{E}}(M_{a|x^{*}} \otimes (Z_{a,i} + Z_{a,i}^{*} + (1 - t_{i})Z_{a,i}^{*}Z_{a,i}) + t_{i}Z_{a,i}Z_{a,i}^{*}) \right]$$
Drop \otimes and impose $[M, Z] = 0$.

<u>Remarks</u>

- Can now be easily relaxed to an NCPOP and solved using NPA [PNA10].
- NPA hierarchy converges as ||Z|| can be bounded.

 $H(A|B) = -D(\rho_{AB} || I_A \otimes \rho_B)$

Theorem

The rate inf $H(A|X = x^*, Q_E)$ is never smaller than

$$c_{m} + \inf_{\text{strategies}} \sum_{i=1}^{m-1} \frac{w_{i}}{t_{i} \ln 2} \sum_{a} \operatorname{Tr} \left[\rho_{Q_{A}Q_{E}}(M_{a|x^{*}} \otimes (Z_{a,i} + Z_{a,i}^{*} + (1 - t_{i})Z_{a,i}^{*}Z_{a,i}) + t_{i}Z_{a,i}Z_{a,i}^{*}) \right]$$

$$Drop \otimes \text{ and impose } [M, Z] = 0.$$

Remarks

- Can now be easily relaxed to an NCPOP and solved using NPA [PNA10].
- NPA hierarchy converges as ||Z|| can be bounded.
- Similar results for $H(AB|X = x, Y = y, Q_E)$ or $H(A|XQ_E)$ and others.

Results

 Applied our method to compute rates for DIRNG and DIQKD.

・ロト ・四ト ・ヨト ・ヨト

Results

- Applied our method to compute rates for DIRNG and DIQKD.
- Looked at different constraint sets C:
 - CHSH score

$$\frac{1}{4}\sum_{xy=a\oplus b}p(ab|xy)\geq\omega$$

Full distribution

$$p(ab|xy) = c_{abxy} \qquad \forall (a, b, x, y)$$

Results

- Applied our method to compute rates for DIRNG and DIQKD.
- Looked at different constraint sets C:
 - CHSH score

Α

Full distribution

$$p(ab|xy) = c_{abxy}$$
 $\forall (a, b, x, y)$

- Investigated detection efficiency noise model.
 - Independent probability $\eta \in [0, 1]$ that each device *succeeds*.
 - Device failures recorded as a particular outcome.

・ロト ・ 一下・ ・ ヨト・

B

Results I – Recovering tight bounds for the CHSH game

Results I - Recovering tight bounds for the CHSH game

Results I – Recovering tight bounds for the CHSH game

Results I - Recovering tight bounds for the CHSH game

Results II - Improved randomness expansion rates

Bounding inf $H(AB|X = 0, Y = 0, Q_E)$

Results III - Improved DIQKD rates

Bounding inf $H(A|X = 0, Q_E) - H(A|X = 0, Y = 2, B)$

Summary

New general method to compute rates of DI protocols.

э.

Summary

- New general method to compute rates of DI protocols.
- Convergent (in a sense) observe practical convergence also.

3

メロト メポト メヨト メヨト

Summary

- New general method to compute rates of DI protocols.
- Convergent (in a sense) observe practical convergence also.
- Outperforms all previous methods (+ faster)

Summary

- New general method to compute rates of DI protocols.
- Convergent (in a sense) observe practical convergence also.
- Outperforms all previous methods (+ faster)
- Applies to infinite dimensional systems and can be used directly with EAT to prove security.

Summary

- New general method to compute rates of DI protocols.
- Convergent (in a sense) observe practical convergence also.
- Outperforms all previous methods (+ faster)
- Applies to infinite dimensional systems and can be used directly with EAT to prove security.

<u>Outlook</u>

Better understand convergence? (commuting operator vs tensor product).

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Summary

- New general method to compute rates of DI protocols.
- Convergent (in a sense) observe practical convergence also.
- Outperforms all previous methods (+ faster)
- Applies to infinite dimensional systems and can be used directly with EAT to prove security.

<u>Outlook</u>

- Better understand convergence? (commuting operator vs tensor product).
- Is DIQKD feasible now? (Better experimental model / finite size analysis)

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Summary

- New general method to compute rates of DI protocols.
- Convergent (in a sense) observe practical convergence also.
- Outperforms all previous methods (+ faster)
- Applies to infinite dimensional systems and can be used directly with EAT to prove security.

<u>Outlook</u>

- Better understand convergence? (commuting operator vs tensor product).
- Is DIQKD feasible now? (Better experimental model / finite size analysis)
- Beyond DIQKD?

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Bibliography

Peter Brown, Hamza Fawzi, and Omar Fawzi.

Computing conditional entropies for quantum correlations. *Nature communications*, 12(1):1–12, 2021.

Federico Grasselli, Gláucia Murta, Hermann Kampermann, and Dagmar Bruß. In preparation.

Timo Holz, Hermann Kampermann, and Dagmar Bruß.

Genuine multipartite bell inequality for device-independent conference key agreement. *Physical Review Research*, 2(2):023251, 2020.

Michele Masini, Stefano Pironio, and Erik Woodhead.

Simple and practical diqkd security analysis via bb84-type uncertainty relations and pauli correlation constraints. arXiv preprint arXiv:2107.08894, 2021.

Stefano Pironio, Antonio Acín, Nicolas Brunner, Nicolas Gisin, Serge Massar, and Valerio Scarani.

Device-independent quantum key distribution secure against collective attacks. New Journal of Physics, 11(4):045021, 2009.

Stefano Pironio, Miguel Navascués, and Antonio Acín.

Convergent relaxations of polynomial optimization problems with noncommuting variables. SIAM Journal on Optimization, 20(5):2157–2180, 2010.

Ernest Y-Z Tan, René Schwonnek, Koon Tong Goh, Ignatius William Primaatmaja, and Charles C-W Lim. Computing secure key rates for quantum key distribution with untrusted devices. e-print arXiv:1908.11372, 2019.

Erik Woodhead, Antonio Acín, and Stefano Pironio.

Bonus results - DICKA setting (Holz inequality [HKB20])

Bonus results - DICKA setting (Holz inequality [HKB20])

Bounding inf $H(A|X = 0, Q_E)$

Bell-inequality violation $\Box \rightarrow \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$

Bonus results – Generalized CHSH [WAP21] ($\alpha = 1.1$)

Bonus results – Generalized CHSH [WAP21] ($\alpha = 1.1$)

Bonus results – Generalized CHSH [WAP21] ($\alpha = 0.9$)

